#include "bin_patch.h" #include "File.h" #include "Config.h" #include "version.h" #include "Emu/Memory/vm.h" #include "Emu/System.h" #include "util/types.hpp" #include "util/endian.hpp" #include "util/asm.hpp" LOG_CHANNEL(patch_log, "PAT"); template <> void fmt_class_string::format(std::string& out, u64 arg) { format_enum(out, arg, [](YAML::NodeType::value value) { switch (value) { case YAML::NodeType::Undefined: return "Undefined"; case YAML::NodeType::Null: return "Null"; case YAML::NodeType::Scalar: return "Scalar"; case YAML::NodeType::Sequence: return "Sequence"; case YAML::NodeType::Map: return "Map"; } return unknown; }); } template <> void fmt_class_string::format(std::string& out, u64 arg) { format_enum(out, arg, [](patch_type value) { switch (value) { case patch_type::invalid: return "invalid"; case patch_type::alloc: return "alloc"; case patch_type::code_alloc: return "calloc"; case patch_type::jump: return "jump"; case patch_type::jump_link: return "jumpl"; case patch_type::load: return "load"; case patch_type::byte: return "byte"; case patch_type::le16: return "le16"; case patch_type::le32: return "le32"; case patch_type::le64: return "le64"; case patch_type::bef32: return "bef32"; case patch_type::bef64: return "bef64"; case patch_type::be16: return "be16"; case patch_type::be32: return "be32"; case patch_type::bd32: return "bd32"; case patch_type::be64: return "be64"; case patch_type::bd64: return "bd64"; case patch_type::lef32: return "lef32"; case patch_type::lef64: return "lef64"; case patch_type::utf8: return "utf8"; } return unknown; }); } patch_engine::patch_engine() { const std::string patches_path = get_patches_path(); if (!fs::create_path(patches_path)) { patch_log.fatal("Failed to create path: %s (%s)", patches_path, fs::g_tls_error); } } std::string patch_engine::get_patch_config_path() { #ifdef _WIN32 const std::string config_dir = fs::get_config_dir() + "config/"; const std::string patch_path = config_dir + "patch_config.yml"; if (!fs::create_path(config_dir)) { patch_log.error("Could not create path: %s (%s)", patch_path, fs::g_tls_error); } return patch_path; #else return fs::get_config_dir() + "patch_config.yml"; #endif } std::string patch_engine::get_patches_path() { return fs::get_config_dir() + "patches/"; } std::string patch_engine::get_imported_patch_path() { return get_patches_path() + "imported_patch.yml"; } static void append_log_message(std::stringstream* log_messages, const std::string& message) { if (log_messages) *log_messages << message << std::endl; }; bool patch_engine::load(patch_map& patches_map, const std::string& path, std::string content, bool importing, std::stringstream* log_messages) { if (content.empty()) { // Load patch file fs::file file{path}; if (!file) { // Do nothing return true; } content = file.to_string(); } // Interpret yaml nodes auto [root, error] = yaml_load(content); if (!error.empty() || !root) { append_log_message(log_messages, "Fatal Error: Failed to load file!"); patch_log.fatal("Failed to load patch file %s:\n%s", path, error); return false; } // Load patch config to determine which patches are enabled patch_map patch_config; if (!importing) { patch_config = load_config(); } std::string version; if (const auto version_node = root[patch_key::version]) { version = version_node.Scalar(); if (version != patch_engine_version) { append_log_message(log_messages, fmt::format("Error: File version %s does not match patch engine target version %s (file: %s)", version, patch_engine_version, path)); patch_log.error("File version %s does not match patch engine target version %s (file: %s)", version, patch_engine_version, path); return false; } // We don't need the Version node in local memory anymore root.remove(patch_key::version); } else { append_log_message(log_messages, fmt::format("Error: No '%s' entry found. Patch engine version = %s (file: %s)", patch_key::version, patch_engine_version, path)); patch_log.error("No '%s' entry found. Patch engine version = %s (file: %s)", patch_key::version, patch_engine_version, path); return false; } bool is_valid = true; // Go through each main key in the file for (auto pair : root) { const auto& main_key = pair.first.Scalar(); if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map) { append_log_message(log_messages, fmt::format("Error: Skipping key %s: expected Map, found %s", main_key, yml_type)); patch_log.error("Skipping key %s: expected Map, found %s (file: %s)", main_key, yml_type, path); is_valid = false; continue; } if (main_key.empty()) { append_log_message(log_messages, "Error: Skipping empty key"); patch_log.error("Skipping empty key (file: %s)", path); is_valid = false; continue; } // Skip Anchors if (main_key == patch_key::anchors) { continue; } // Find or create an entry matching the key/hash in our map auto& container = patches_map[main_key]; container.hash = main_key; container.version = version; // Go through each patch for (auto patches_entry : pair.second) { // Each key in "Patches" is also the patch description const std::string& description = patches_entry.first.Scalar(); // Compile patch information if (const auto yml_type = patches_entry.second.Type(); yml_type != YAML::NodeType::Map) { append_log_message(log_messages, fmt::format("Error: Skipping Patch key %s: expected Map, found %s (key: %s)", description, yml_type, main_key)); patch_log.error("Skipping Patch key %s: expected Map, found %s (key: %s, file: %s)", description, yml_type, main_key, path); is_valid = false; continue; } struct patch_info info {}; info.description = description; info.hash = main_key; info.version = version; info.source_path = path; if (const auto games_node = patches_entry.second[patch_key::games]) { if (const auto yml_type = games_node.Type(); yml_type != YAML::NodeType::Map) { append_log_message(log_messages, fmt::format("Error: Skipping Games key: expected Map, found %s (patch: %s, key: %s)", yml_type, description, main_key)); patch_log.error("Skipping Games key: expected Map, found %s (patch: %s, key: %s, file: %s)", yml_type, description, main_key, path); is_valid = false; continue; } for (const auto game_node : games_node) { const std::string& title = game_node.first.Scalar(); if (title.empty()) { append_log_message(log_messages, fmt::format("Error: Empty game title (key: %s, file: %s)", main_key, path)); patch_log.error("Empty game title (key: %s, file: %s)", main_key, path); is_valid = false; continue; } if (const auto yml_type = game_node.second.Type(); yml_type != YAML::NodeType::Map) { append_log_message(log_messages, fmt::format("Error: Skipping game %s: expected Map, found %s (patch: %s, key: %s)", title, yml_type, description, main_key)); patch_log.error("Skipping game %s: expected Map, found %s (patch: %s, key: %s, file: %s)", title, yml_type, description, main_key, path); is_valid = false; continue; } const bool title_is_all_key = title == patch_key::all; for (const auto serial_node : game_node.second) { const std::string& serial = serial_node.first.Scalar(); if (serial.empty()) { append_log_message(log_messages, fmt::format("Error: Using empty serial (title: %s, patch: %s, key: %s)", title, description, main_key)); patch_log.error("Using empty serial (title: %s, patch: %s, key: %s, file: %s)", title, description, main_key, path); is_valid = false; continue; } else if (serial == patch_key::all) { if (!title_is_all_key) { append_log_message(log_messages, fmt::format("Error: Using '%s' as serial is not allowed for titles other than '%s' (title: %s, patch: %s, key: %s)", patch_key::all, patch_key::all, title, description, main_key)); patch_log.error("Error: Using '%s' as serial is not allowed for titles other than '%s' (title: %s, patch: %s, key: %s, file: %s)", patch_key::all, patch_key::all, title, description, main_key, path); is_valid = false; continue; } } else if (title_is_all_key) { append_log_message(log_messages, fmt::format("Error: Only '%s' is allowed as serial if the title is '%s' (serial: %s, patch: %s, key: %s)", patch_key::all, patch_key::all, serial, description, main_key)); patch_log.error("Error: Only '%s' is allowed as serial if the title is '%s' (serial: %s, patch: %s, key: %s, file: %s)", patch_key::all, patch_key::all, serial, description, main_key, path); is_valid = false; continue; } if (const auto yml_type = serial_node.second.Type(); yml_type != YAML::NodeType::Sequence) { append_log_message(log_messages, fmt::format("Error: Skipping %s: expected Sequence, found %s (title: %s, patch: %s, key: %s)", serial, title, yml_type, description, main_key)); patch_log.error("Skipping %s: expected Sequence, found %s (title: %s, patch: %s, key: %s, file: %s)", serial, title, yml_type, description, main_key, path); is_valid = false; continue; } patch_engine::patch_app_versions app_versions; for (const auto version : serial_node.second) { const auto& app_version = version.Scalar(); // Find out if this patch was enabled in the patch config const bool enabled = patch_config[main_key].patch_info_map[description].titles[title][serial][app_version]; app_versions.emplace(version.Scalar(), enabled); } if (app_versions.empty()) { append_log_message(log_messages, fmt::format("Error: Skipping %s: empty Sequence (title: %s, patch: %s, key: %s)", serial, title, description, main_key)); patch_log.error("Skipping %s: empty Sequence (title: %s, patch: %s, key: %s, file: %s)", serial, title, description, main_key, path); is_valid = false; } else { info.titles[title][serial] = app_versions; } } } } if (const auto author_node = patches_entry.second[patch_key::author]) { info.author = author_node.Scalar(); } if (const auto patch_version_node = patches_entry.second[patch_key::patch_version]) { info.patch_version = patch_version_node.Scalar(); } if (const auto notes_node = patches_entry.second[patch_key::notes]) { if (notes_node.IsSequence()) { for (const auto note : notes_node) { if (note && note.IsScalar()) { info.notes += note.Scalar(); } else { append_log_message(log_messages, fmt::format("Error: Skipping sequenced Note (patch: %s, key: %s)", description, main_key)); patch_log.error("Skipping sequenced Note (patch: %s, key: %s, file: %s)", description, main_key, path); is_valid = false; } } } else { info.notes = notes_node.Scalar(); } } if (const auto patch_group_node = patches_entry.second[patch_key::group]) { info.patch_group = patch_group_node.Scalar(); } if (const auto patch_node = patches_entry.second[patch_key::patch]) { if (!read_patch_node(info, patch_node, root, log_messages)) { is_valid = false; } } // Skip this patch if a higher patch version already exists if (container.patch_info_map.find(description) != container.patch_info_map.end()) { bool ok; const auto existing_version = container.patch_info_map[description].patch_version; const bool version_is_bigger = utils::compare_versions(info.patch_version, existing_version, ok) > 0; if (!ok || !version_is_bigger) { patch_log.warning("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s (in file %s)", info.patch_version, existing_version, main_key, description, path); append_log_message(log_messages, fmt::format("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s (in file %s)", info.patch_version, existing_version, main_key, description, path)); continue; } else if (!importing) { patch_log.warning("A lower patch version was found ('%s' vs '%s') for %s: %s (in file %s)", existing_version, info.patch_version, main_key, description, container.patch_info_map[description].source_path); } } // Insert patch information container.patch_info_map[description] = info; } } return is_valid; } patch_type patch_engine::get_patch_type(const std::string& text) { u64 type_val = 0; if (!cfg::try_to_enum_value(&type_val, &fmt_class_string::format, text)) { return patch_type::invalid; } return static_cast(type_val); } patch_type patch_engine::get_patch_type(YAML::Node node) { if (!node || !node.IsScalar()) { return patch_type::invalid; } return get_patch_type(node.Scalar()); } bool patch_engine::add_patch_data(YAML::Node node, patch_info& info, u32 modifier, const YAML::Node& root, std::stringstream* log_messages) { if (!node || !node.IsSequence()) { append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s)", info.description, info.hash)); patch_log.error("Skipping invalid patch node %s. (key: %s)", info.description, info.hash); return false; } const auto type_node = node[0]; auto addr_node = node[1]; const auto value_node = node[2]; const auto type = get_patch_type(type_node); if (type == patch_type::invalid) { const auto type_str = type_node && type_node.IsScalar() ? type_node.Scalar() : ""; append_log_message(log_messages, fmt::format("Skipping patch node %s: type '%s' is invalid. (key: %s)", info.description, type_str, info.hash)); patch_log.error("Skipping patch node %s: type '%s' is invalid. (key: %s)", info.description, type_str, info.hash); return false; } if (type == patch_type::load) { // Special syntax: anchors (named sequence) // Check if the anchor was resolved. if (const auto yml_type = addr_node.Type(); yml_type != YAML::NodeType::Sequence) { append_log_message(log_messages, fmt::format("Skipping sequence: expected Sequence, found %s (key: %s)", yml_type, info.hash)); patch_log.error("Skipping sequence: expected Sequence, found %s (key: %s)", yml_type, info.hash); return false; } // Address modifier (optional) const u32 mod = value_node.as(0); bool is_valid = true; for (const auto& item : addr_node) { if (!add_patch_data(item, info, mod, root, log_messages)) { is_valid = false; } } return is_valid; } struct patch_data p_data{}; p_data.type = type; p_data.offset = addr_node.as(0) + modifier; p_data.original_value = value_node.IsScalar() ? value_node.Scalar() : ""; std::string error_message; switch (p_data.type) { case patch_type::utf8: { break; } case patch_type::bef32: case patch_type::lef32: case patch_type::bef64: case patch_type::lef64: { p_data.value.double_value = get_yaml_node_value(value_node, error_message); break; } default: { p_data.value.long_value = get_yaml_node_value(value_node, error_message); break; } } if (!error_message.empty()) { error_message = fmt::format("Skipping patch data entry: [ %s, 0x%.8x, %s ] (key: %s) %s", p_data.type, p_data.offset, p_data.original_value.empty() ? "?" : p_data.original_value, info.hash, error_message); append_log_message(log_messages, error_message); patch_log.error("%s", error_message); return false; } info.data_list.emplace_back(p_data); return true; } bool patch_engine::read_patch_node(patch_info& info, YAML::Node node, const YAML::Node& root, std::stringstream* log_messages) { if (!node) { append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s)", info.description, info.hash)); patch_log.error("Skipping invalid patch node %s. (key: %s)", info.description, info.hash); return false; } if (const auto yml_type = node.Type(); yml_type != YAML::NodeType::Sequence) { append_log_message(log_messages, fmt::format("Skipping patch node %s: expected Sequence, found %s (key: %s)", info.description, yml_type, info.hash)); patch_log.error("Skipping patch node %s: expected Sequence, found %s (key: %s)", info.description, yml_type, info.hash); return false; } bool is_valid = true; for (auto patch : node) { if (!add_patch_data(patch, info, 0, root, log_messages)) { is_valid = false; } } return is_valid; } void patch_engine::append_global_patches() { // Regular patch.yml load(m_map, get_patches_path() + "patch.yml"); // Imported patch.yml load(m_map, get_imported_patch_path()); } void patch_engine::append_title_patches(const std::string& title_id) { if (title_id.empty()) { return; } // Regular patch.yml load(m_map, get_patches_path() + title_id + "_patch.yml"); } void ppu_register_range(u32 addr, u32 size); bool ppu_form_branch_to_code(u32 entry, u32 target, bool link = false); void unmap_vm_area(std::shared_ptr& ptr) { if (ptr && ptr->flags & (1ull << 62)) { vm::unmap(0, true, &ptr); } } // Returns old 'applied' size static usz apply_modification(std::basic_string& applied, const patch_engine::patch_info& patch, u8* dst, u32 filesz, u32 min_addr) { const usz old_applied_size = applied.size(); for (const auto& p : patch.data_list) { if (p.type != patch_type::alloc) continue; // Do not allow null address or if dst is not a VM ptr if (const u32 alloc_at = vm::try_get_addr(dst + (p.offset & -4096)).first; alloc_at >> 16) { const u32 alloc_size = utils::align(static_cast(p.value.long_value) + alloc_at % 4096, 4096); // Allocate map if needed, if allocated flags will indicate that bit 62 is set (unique identifier) auto alloc_map = vm::reserve_map(vm::any, alloc_at & -0x10000, utils::align(alloc_size, 0x10000), vm::page_size_64k | vm::preallocated | (1ull << 62)); u64 flags = vm::alloc_unwritable; switch (p.offset % patch_engine::mem_protection::mask) { case patch_engine::mem_protection::wx: flags = vm::alloc_executable; break; case patch_engine::mem_protection::ro: break; case patch_engine::mem_protection::rx: flags |= vm::alloc_executable; break; case patch_engine::mem_protection::rw: flags &= ~vm::alloc_unwritable; break; default: ensure(false); } if (alloc_map) { if ((p.alloc_addr = alloc_map->falloc(alloc_at, alloc_size, nullptr, flags))) { if (flags & vm::alloc_executable) { ppu_register_range(alloc_at, alloc_size); } applied.push_back(::narrow(&p - patch.data_list.data())); // Remember index in case of failure to allocate any memory continue; } // Revert if allocated map before failure unmap_vm_area(alloc_map); } } // Revert in case of failure std::for_each(applied.begin() + old_applied_size, applied.end(), [&](u32 index) { const u32 addr = std::exchange(patch.data_list[index].alloc_addr, 0); vm::dealloc(addr); auto alloc_map = vm::get(vm::any, addr); unmap_vm_area(alloc_map); }); applied.resize(old_applied_size); return old_applied_size; } // Fixup values from before std::fill(applied.begin() + old_applied_size, applied.end(), u32{umax}); u32 relocate_instructions_at = 0; for (const auto& p : patch.data_list) { u32 offset = p.offset; if (relocate_instructions_at && vm::read32(relocate_instructions_at) != 0x6000'0000u) { // No longer points a NOP to be filled, meaning we ran out of instructions relocate_instructions_at = 0; } if (!relocate_instructions_at && (offset < min_addr || offset - min_addr >= filesz)) { // This patch is out of range for this segment continue; } offset -= min_addr; auto ptr = dst + offset; if (relocate_instructions_at) { offset = relocate_instructions_at; ptr = vm::get_super_ptr(relocate_instructions_at); relocate_instructions_at += 4; // Advance to the next instruction on dynamic memory } u32 resval = umax; switch (p.type) { case patch_type::invalid: case patch_type::load: { // Invalid in this context continue; } case patch_type::alloc: { // Applied before continue; } case patch_type::code_alloc: { relocate_instructions_at = 0; const u32 out_branch = vm::try_get_addr(dst + (offset & -4)).first; // Allow only if points to a PPU executable instruction if (out_branch < 0x10000 || out_branch >= 0x4000'0000 || !vm::check_addr<4>(out_branch, vm::page_executable)) { continue; } const u32 alloc_size = utils::align(static_cast(p.value.long_value + 1) * 4, 0x10000); // Always executable u64 flags = vm::alloc_executable | vm::alloc_unwritable; switch (p.offset % patch_engine::mem_protection::mask) { case patch_engine::mem_protection::rw: case patch_engine::mem_protection::wx: { flags &= ~vm::alloc_unwritable; break; } case patch_engine::mem_protection::ro: case patch_engine::mem_protection::rx: { break; } default: ensure(false); } const auto alloc_map = ensure(vm::get(vm::any, out_branch)); // Range allowed for absolute branches to operate at // It takes into account that we need to put a branch for return at the end of memory space const u32 addr = p.alloc_addr = alloc_map->alloc(alloc_size, nullptr, 0x10000, flags); if (!addr) { patch_log.error("Failed to allocate 0x%x bytes for code (entry=0x%x)", alloc_size, addr, out_branch); continue; } patch_log.success("Allocated 0x%x for code at 0x%x (entry=0x%x)", alloc_size, addr, out_branch); // NOP filled std::fill_n(vm::get_super_ptr(addr), p.value.long_value, 0x60000000); // Register code ppu_register_range(addr, alloc_size); // Write branch to code ppu_form_branch_to_code(out_branch, addr); resval = out_branch & -4; // Write address of the allocated memory to the code entry *vm::get_super_ptr(resval) = addr; // Write branch to return to code ppu_form_branch_to_code(addr + static_cast(p.value.long_value) * 4, resval + 4); relocate_instructions_at = addr; break; } case patch_type::jump: case patch_type::jump_link: { const u32 out_branch = vm::try_get_addr(dst + (offset & -4)).first; const u32 dest = static_cast(p.value.long_value); // Allow only if points to a PPU executable instruction if (!ppu_form_branch_to_code(out_branch, dest, p.type == patch_type::jump_link)) { continue; } resval = out_branch & -4; break; } case patch_type::byte: { *ptr = static_cast(p.value.long_value); break; } case patch_type::le16: { le_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::le32: { le_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::lef32: { le_t val = static_cast(p.value.double_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::le64: { le_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::lef64: { le_t val = p.value.double_value; std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::be16: { be_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::bd32: { be_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::be32: { be_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); if (offset % 4 == 0) resval = offset; break; } case patch_type::bef32: { be_t val = static_cast(p.value.double_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::bd64: { be_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::be64: { be_t val = static_cast(p.value.long_value); std::memcpy(ptr, &val, sizeof(val)); if (offset % 4) { break; } resval = offset; applied.push_back((offset + 7) & -4); // Two 32-bit locations break; } case patch_type::bef64: { be_t val = p.value.double_value; std::memcpy(ptr, &val, sizeof(val)); break; } case patch_type::utf8: { std::memcpy(ptr, p.original_value.data(), p.original_value.size()); break; } } // Possibly an executable instruction applied.push_back(resval); } return old_applied_size; } std::basic_string patch_engine::apply(const std::string& name, u8* dst, u32 filesz, u32 min_addr) { if (m_map.find(name) == m_map.cend()) { return {}; } std::basic_string applied_total; const auto& container = m_map.at(name); const auto& serial = Emu.GetTitleID(); const auto& app_version = Emu.GetAppVersion(); // Different containers in order to seperate the patches std::vector patches_for_this_serial_and_this_version; std::vector patches_for_this_serial_and_all_versions; std::vector patches_for_all_serials_and_this_version; std::vector patches_for_all_serials_and_all_versions; // Sort patches into different vectors based on their serial and version for (const auto& [description, patch] : container.patch_info_map) { // Find out if this patch is enabled for (const auto& [title, serials] : patch.titles) { bool is_all_serials = false; bool is_all_versions = false; std::string found_serial; if (serials.find(serial) != serials.end()) { found_serial = serial; } else if (serials.find(patch_key::all) != serials.end()) { found_serial = patch_key::all; is_all_serials = true; } if (found_serial.empty()) { continue; } const auto& app_versions = serials.at(found_serial); std::string found_app_version; if (app_versions.find(app_version) != app_versions.end()) { found_app_version = app_version; } else if (app_versions.find(patch_key::all) != app_versions.end()) { found_app_version = patch_key::all; is_all_versions = true; } if (!found_app_version.empty() && app_versions.at(found_app_version)) { // This patch is enabled if (is_all_serials) { if (is_all_versions) { patches_for_all_serials_and_all_versions.emplace_back(&patch); } else { patches_for_all_serials_and_this_version.emplace_back(&patch); } } else if (is_all_versions) { patches_for_this_serial_and_all_versions.emplace_back(&patch); } else { patches_for_this_serial_and_this_version.emplace_back(&patch); } break; } } } // Apply modifications sequentially auto apply_func = [&](const patch_info& patch) { const usz old_size = apply_modification(applied_total, patch, dst, filesz, min_addr); if (applied_total.size() != old_size) { patch_log.success("Applied patch (hash='%s', description='%s', author='%s', patch_version='%s', file_version='%s') (<- %u)", patch.hash, patch.description, patch.author, patch.patch_version, patch.version, applied_total.size() - old_size); } }; // Sort specific patches after global patches // So they will determine the end results const auto patch_super_list = { &patches_for_all_serials_and_all_versions, &patches_for_all_serials_and_this_version, &patches_for_this_serial_and_all_versions, &patches_for_this_serial_and_this_version }; // Filter by patch group (reverse so specific patches will be prioritized over globals) for (auto it = std::rbegin(patch_super_list); it != std::rend(patch_super_list); it++) { for (auto& patch : *it.operator*()) { if (!patch->patch_group.empty()) { if (!m_applied_groups.insert(patch->patch_group).second) { patch = nullptr; } } } } for (auto patch_list : patch_super_list) { for (const patch_info* patch : *patch_list) { if (patch) { apply_func(*patch); } } } return applied_total; } void patch_engine::unload(const std::string& name) { if (m_map.find(name) == m_map.cend()) { return; } const auto& container = m_map.at(name); for (const auto& [description, patch] : container.patch_info_map) { for (auto& entry : patch.data_list) { // Deallocate used memory if (u32 addr = std::exchange(entry.alloc_addr, 0)) { vm::dealloc(addr); auto alloc_map = vm::get(vm::any, addr); unmap_vm_area(alloc_map); } } } } void patch_engine::save_config(const patch_map& patches_map) { const std::string path = get_patch_config_path(); patch_log.notice("Saving patch config file %s", path); fs::file file(path, fs::rewrite); if (!file) { patch_log.fatal("Failed to open patch config file %s (%s)", path, fs::g_tls_error); return; } YAML::Emitter out; out << YAML::BeginMap; // Save 'enabled' state per hash, description, serial and app_version patch_map config_map; for (const auto& [hash, container] : patches_map) { for (const auto& [description, patch] : container.patch_info_map) { for (const auto& [title, serials] : patch.titles) { for (const auto& [serial, app_versions] : serials) { for (const auto& [app_version, enabled] : app_versions) { if (enabled) { config_map[hash].patch_info_map[description].titles[title][serial][app_version] = true; } } } } } if (const auto& enabled_patches = config_map[hash].patch_info_map; !enabled_patches.empty()) { out << hash << YAML::BeginMap; for (const auto& [description, patch] : enabled_patches) { const auto& titles = patch.titles; out << description << YAML::BeginMap; for (const auto& [title, serials] : titles) { out << title << YAML::BeginMap; for (const auto& [serial, app_versions] : serials) { out << serial << YAML::BeginMap; for (const auto& [app_version, enabled] : app_versions) { out << app_version << enabled; } out << YAML::EndMap; } out << YAML::EndMap; } out << YAML::EndMap; } out << YAML::EndMap; } } out << YAML::EndMap; file.write(out.c_str(), out.size()); } static void append_patches(patch_engine::patch_map& existing_patches, const patch_engine::patch_map& new_patches, usz& count, usz& total, std::stringstream* log_messages) { for (const auto& [hash, new_container] : new_patches) { total += new_container.patch_info_map.size(); if (existing_patches.find(hash) == existing_patches.end()) { existing_patches[hash] = new_container; count += new_container.patch_info_map.size(); continue; } auto& container = existing_patches[hash]; for (const auto& [description, new_info] : new_container.patch_info_map) { if (container.patch_info_map.find(description) == container.patch_info_map.end()) { container.patch_info_map[description] = new_info; count++; continue; } auto& info = container.patch_info_map[description]; bool ok; const bool version_is_bigger = utils::compare_versions(new_info.patch_version, info.patch_version, ok) > 0; if (!ok) { patch_log.error("Failed to compare patch versions ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description); append_log_message(log_messages, fmt::format("Failed to compare patch versions ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description)); continue; } if (!version_is_bigger) { patch_log.error("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description); append_log_message(log_messages, fmt::format("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description)); continue; } for (const auto& [title, new_serials] : new_info.titles) { for (const auto& [serial, new_app_versions] : new_serials) { if (!new_app_versions.empty()) { info.titles[title][serial].insert(new_app_versions.begin(), new_app_versions.end()); } } } if (!new_info.patch_version.empty()) info.patch_version = new_info.patch_version; if (!new_info.author.empty()) info.author = new_info.author; if (!new_info.notes.empty()) info.notes = new_info.notes; if (!new_info.data_list.empty()) info.data_list = new_info.data_list; if (!new_info.source_path.empty()) info.source_path = new_info.source_path; count++; } } } bool patch_engine::save_patches(const patch_map& patches, const std::string& path, std::stringstream* log_messages) { fs::file file(path, fs::rewrite); if (!file) { patch_log.fatal("save_patches: Failed to open patch file %s (%s)", path, fs::g_tls_error); append_log_message(log_messages, fmt::format("Failed to open patch file %s (%s)", path, fs::g_tls_error)); return false; } YAML::Emitter out; out << YAML::BeginMap; out << patch_key::version << patch_engine_version; for (const auto& [hash, container] : patches) { if (container.patch_info_map.empty()) { continue; } out << YAML::Newline << YAML::Newline; out << hash << YAML::BeginMap; for (const auto& [description, info] : container.patch_info_map) { out << description << YAML::BeginMap; out << patch_key::games << YAML::BeginMap; for (const auto& [title, serials] : info.titles) { out << title << YAML::BeginMap; for (const auto& [serial, app_versions] : serials) { out << serial << YAML::BeginSeq; for (const auto& app_version : app_versions) { out << app_version.first; } out << YAML::EndSeq; } out << YAML::EndMap; } out << YAML::EndMap; if (!info.author.empty()) out << patch_key::author << info.author; if (!info.patch_version.empty()) out << patch_key::patch_version << info.patch_version; if (!info.patch_group.empty()) out << patch_key::group << info.patch_group; if (!info.notes.empty()) out << patch_key::notes << info.notes; out << patch_key::patch << YAML::BeginSeq; for (const auto& data : info.data_list) { if (data.type == patch_type::invalid || data.type == patch_type::load) { // Unreachable with current logic continue; } out << YAML::Flow; out << YAML::BeginSeq; out << fmt::format("%s", data.type); out << fmt::format("0x%.8x", data.offset); out << data.original_value; out << YAML::EndSeq; } out << YAML::EndSeq; out << YAML::EndMap; } out << YAML::EndMap; } out << YAML::EndMap; file.write(out.c_str(), out.size()); return true; } bool patch_engine::import_patches(const patch_engine::patch_map& patches, const std::string& path, usz& count, usz& total, std::stringstream* log_messages) { patch_engine::patch_map existing_patches; if (load(existing_patches, path, "", true, log_messages)) { append_patches(existing_patches, patches, count, total, log_messages); return count == 0 || save_patches(existing_patches, path, log_messages); } return false; } bool patch_engine::remove_patch(const patch_info& info) { patch_engine::patch_map patches; if (load(patches, info.source_path)) { if (patches.find(info.hash) != patches.end()) { auto& container = patches[info.hash]; if (container.patch_info_map.find(info.description) != container.patch_info_map.end()) { container.patch_info_map.erase(info.description); return save_patches(patches, info.source_path); } } } return false; } patch_engine::patch_map patch_engine::load_config() { patch_map config_map; const std::string path = get_patch_config_path(); patch_log.notice("Loading patch config file %s", path); if (fs::file f{ path }) { auto [root, error] = yaml_load(f.to_string()); if (!error.empty()) { patch_log.fatal("Failed to load patch config file %s:\n%s", path, error); return config_map; } for (const auto pair : root) { const auto& hash = pair.first.Scalar(); if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map) { patch_log.error("Error loading patch config key %s: expected Map, found %s (file: %s)", hash, yml_type, path); continue; } for (const auto patch : pair.second) { const auto& description = patch.first.Scalar(); if (const auto yml_type = patch.second.Type(); yml_type != YAML::NodeType::Map) { patch_log.error("Error loading patch %s: expected Map, found %s (hash: %s, file: %s)", description, yml_type, hash, path); continue; } for (const auto title_node : patch.second) { const auto& title = title_node.first.Scalar(); if (const auto yml_type = title_node.second.Type(); yml_type != YAML::NodeType::Map) { patch_log.error("Error loading %s: expected Map, found %s (description: %s, hash: %s, file: %s)", title, yml_type, description, hash, path); continue; } for (const auto serial_node : title_node.second) { const auto& serial = serial_node.first.Scalar(); if (const auto yml_type = serial_node.second.Type(); yml_type != YAML::NodeType::Map) { patch_log.error("Error loading %s: expected Map, found %s (title: %s, description: %s, hash: %s, file: %s)", serial, yml_type, title, description, hash, path); continue; } for (const auto app_version_node : serial_node.second) { const auto& app_version = app_version_node.first.Scalar(); const bool enabled = app_version_node.second.as(false); config_map[hash].patch_info_map[description].titles[title][serial][app_version] = enabled; } } } } } } return config_map; }