#pragma once #include #if defined(_MSC_VER) && _MSC_VER <= 1800 #define thread_local __declspec(thread) #elif __APPLE__ #define thread_local __thread #endif #if defined(_MSC_VER) #define never_inline __declspec(noinline) #else #define never_inline __attribute__((noinline)) #endif #if defined(_MSC_VER) #define safe_buffers __declspec(safebuffers) #else #define safe_buffers #endif #if defined(_MSC_VER) #define force_inline __forceinline #else #define force_inline __attribute__((always_inline)) #endif #if defined(_MSC_VER) && _MSC_VER <= 1800 #define alignas(x) _CRT_ALIGN(x) #endif #if defined(__GNUG__) #include #include #ifndef __APPLE__ #include #endif #define _fpclass(x) std::fpclassify(x) #define _byteswap_ushort(x) __builtin_bswap16(x) #define _byteswap_uint64(x) __builtin_bswap64(x) #define INFINITE 0xFFFFFFFF #if !defined(__MINGW32__) #define _byteswap_ulong(x) __builtin_bswap32(x) #else inline std::uint32_t _byteswap_ulong(std::uint32_t value) { __asm__("bswap %0" : "+r"(value)); return value; } #endif #ifdef __APPLE__ // XXX only supports a single timer #define TIMER_ABSTIME -1 /* The opengroup spec isn't clear on the mapping from REALTIME to CALENDAR being appropriate or not. http://pubs.opengroup.org/onlinepubs/009695299/basedefs/time.h.html */ #define CLOCK_REALTIME 1 // #define CALENDAR_CLOCK 1 from mach/clock_types.h #define CLOCK_MONOTONIC 0 // #define SYSTEM_CLOCK 0 typedef int clockid_t; /* the mach kernel uses struct mach_timespec, so struct timespec is loaded from for compatability */ // struct timespec { time_t tv_sec; long tv_nsec; }; int clock_gettime(clockid_t clk_id, struct timespec *tp); #endif /* __APPLE__ */ #endif /* __GNUG__ */ #if defined(_MSC_VER) // Unsigned 128-bit integer implementation struct alignas(16) u128 { std::uint64_t lo, hi; u128() = default; u128(const u128&) = default; u128(std::uint64_t l) : lo(l) , hi(0) { } u128 operator +(const u128& r) const { u128 value; _addcarry_u64(_addcarry_u64(0, r.lo, lo, &value.lo), r.hi, hi, &value.hi); return value; } friend u128 operator +(const u128& l, std::uint64_t r) { u128 value; _addcarry_u64(_addcarry_u64(0, r, l.lo, &value.lo), l.hi, 0, &value.hi); return value; } friend u128 operator +(std::uint64_t l, const u128& r) { u128 value; _addcarry_u64(_addcarry_u64(0, r.lo, l, &value.lo), 0, r.hi, &value.hi); return value; } u128 operator -(const u128& r) const { u128 value; _subborrow_u64(_subborrow_u64(0, r.lo, lo, &value.lo), r.hi, hi, &value.hi); return value; } friend u128 operator -(const u128& l, std::uint64_t r) { u128 value; _subborrow_u64(_subborrow_u64(0, r, l.lo, &value.lo), 0, l.hi, &value.hi); return value; } friend u128 operator -(std::uint64_t l, const u128& r) { u128 value; _subborrow_u64(_subborrow_u64(0, r.lo, l, &value.lo), r.hi, 0, &value.hi); return value; } u128 operator +() const { return *this; } u128 operator -() const { u128 value; _subborrow_u64(_subborrow_u64(0, lo, 0, &value.lo), hi, 0, &value.hi); return value; } u128& operator ++() { _addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi); return *this; } u128 operator ++(int) { u128 value = *this; _addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi); return value; } u128& operator --() { _subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi); return *this; } u128 operator --(int) { u128 value = *this; _subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi); return value; } u128 operator ~() const { u128 value; value.lo = ~lo; value.hi = ~hi; return value; } u128 operator &(const u128& r) const { u128 value; value.lo = lo & r.lo; value.hi = hi & r.hi; return value; } u128 operator |(const u128& r) const { u128 value; value.lo = lo | r.lo; value.hi = hi | r.hi; return value; } u128 operator ^(const u128& r) const { u128 value; value.lo = lo ^ r.lo; value.hi = hi ^ r.hi; return value; } u128& operator +=(const u128& r) { _addcarry_u64(_addcarry_u64(0, r.lo, lo, &lo), r.hi, hi, &hi); return *this; } u128& operator +=(uint64_t r) { _addcarry_u64(_addcarry_u64(0, r, lo, &lo), 0, hi, &hi); return *this; } u128& operator &=(const u128& r) { lo &= r.lo; hi &= r.hi; return *this; } u128& operator |=(const u128& r) { lo |= r.lo; hi |= r.hi; return *this; } u128& operator ^=(const u128& r) { lo ^= r.lo; hi ^= r.hi; return *this; } }; #endif inline std::uint32_t cntlz32(std::uint32_t arg) { #if defined(_MSC_VER) unsigned long res; return _BitScanReverse(&res, arg) ? res ^ 31 : 32; #else return arg ? __builtin_clzll(arg) - 32 : 32; #endif } inline std::uint64_t cntlz64(std::uint64_t arg) { #if defined(_MSC_VER) unsigned long res; return _BitScanReverse64(&res, arg) ? res ^ 63 : 64; #else return arg ? __builtin_clzll(arg) : 64; #endif } // compare 16 packed unsigned bytes (greater than) inline __m128i sse_cmpgt_epu8(__m128i A, __m128i B) { // (A xor 0x80) > (B xor 0x80) const auto sign = _mm_set1_epi32(0x80808080); return _mm_cmpgt_epi8(_mm_xor_si128(A, sign), _mm_xor_si128(B, sign)); } inline __m128i sse_cmpgt_epu16(__m128i A, __m128i B) { const auto sign = _mm_set1_epi32(0x80008000); return _mm_cmpgt_epi16(_mm_xor_si128(A, sign), _mm_xor_si128(B, sign)); } inline __m128i sse_cmpgt_epu32(__m128i A, __m128i B) { const auto sign = _mm_set1_epi32(0x80000000); return _mm_cmpgt_epi32(_mm_xor_si128(A, sign), _mm_xor_si128(B, sign)); } inline __m128 sse_exp2_ps(__m128 A) { const auto x0 = _mm_max_ps(_mm_min_ps(A, _mm_set1_ps(127.4999961f)), _mm_set1_ps(-127.4999961f)); const auto x1 = _mm_add_ps(x0, _mm_set1_ps(0.5f)); const auto x2 = _mm_sub_epi32(_mm_cvtps_epi32(x1), _mm_and_si128(_mm_castps_si128(_mm_cmpnlt_ps(_mm_setzero_ps(), x1)), _mm_set1_epi32(1))); const auto x3 = _mm_sub_ps(x0, _mm_cvtepi32_ps(x2)); const auto x4 = _mm_mul_ps(x3, x3); const auto x5 = _mm_mul_ps(x3, _mm_add_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(x4, _mm_set1_ps(0.023093347705f)), _mm_set1_ps(20.20206567f)), x4), _mm_set1_ps(1513.906801f))); const auto x6 = _mm_mul_ps(x5, _mm_rcp_ps(_mm_sub_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(233.1842117f), x4), _mm_set1_ps(4368.211667f)), x5))); return _mm_mul_ps(_mm_add_ps(_mm_add_ps(x6, x6), _mm_set1_ps(1.0f)), _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(x2, _mm_set1_epi32(127)), 23))); } inline __m128 sse_log2_ps(__m128 A) { const auto _1 = _mm_set1_ps(1.0f); const auto _c = _mm_set1_ps(1.442695040f); const auto x0 = _mm_max_ps(A, _mm_castsi128_ps(_mm_set1_epi32(0x00800000))); const auto x1 = _mm_or_ps(_mm_and_ps(x0, _mm_castsi128_ps(_mm_set1_epi32(0x807fffff))), _1); const auto x2 = _mm_rcp_ps(_mm_add_ps(x1, _1)); const auto x3 = _mm_mul_ps(_mm_sub_ps(x1, _1), x2); const auto x4 = _mm_add_ps(x3, x3); const auto x5 = _mm_mul_ps(x4, x4); const auto x6 = _mm_add_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(-0.7895802789f), x5), _mm_set1_ps(16.38666457f)), x5), _mm_set1_ps(-64.1409953f)); const auto x7 = _mm_rcp_ps(_mm_add_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(-35.67227983f), x5), _mm_set1_ps(312.0937664f)), x5), _mm_set1_ps(-769.6919436f))); const auto x8 = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_srli_epi32(_mm_castps_si128(x0), 23), _mm_set1_epi32(127))); return _mm_add_ps(_mm_mul_ps(_mm_mul_ps(_mm_mul_ps(_mm_mul_ps(x5, x6), x7), x4), _c), _mm_add_ps(_mm_mul_ps(x4, _c), x8)); }