vk: Implement VRAM spilling

- The idea is to shift memory to "shared graphics memory" when VRAM is running out
This commit is contained in:
kd-11 2021-07-14 01:19:36 +03:00 committed by kd-11
parent 000414c47d
commit c18e5e07cc
4 changed files with 314 additions and 9 deletions

View File

@ -49,7 +49,10 @@ namespace rsx
// Arbitrary r/w flags, use with caution.
memory_write = 8,
memory_read = 16
memory_read = 16,
// Not r/w but signifies a GPU reference to this object.
gpu_reference = 32
};
private:

View File

@ -112,7 +112,7 @@ void VKGSRender::advance_queued_frames()
vk::vmm_check_memory_usage();
// m_rtts storage is double buffered and should be safe to tag on frame boundary
m_rtts.free_invalidated(*m_current_command_buffer);
m_rtts.free_invalidated(*m_current_command_buffer, vk::vmm_determine_memory_load_severity());
// Texture cache is also double buffered to prevent use-after-free
m_texture_cache.on_frame_end();

View File

@ -52,7 +52,59 @@ namespace vk
if (severity >= rsx::problem_severity::fatal)
{
// TODO
// Drop MSAA resolve/unresolve caches. Only trigger when a hard sync is guaranteed to follow else it will cause even more problems!
auto relieve_memory_pressure = [&](const auto& list)
{
// 2-pass to ensure resources are available where they are most needed
std::vector<std::unique_ptr<vk::viewable_image>> resolve_target_cache;
std::vector<vk::render_target*> deferred_spills;
auto gc = vk::get_resource_manager();
// 1. Scan the list and spill resources that can be spilled immediately if requested. Also gather resources from those that don't need it.
for (auto& surface : list)
{
auto& rtt = surface.second;
if (!rtt->spill_request_tag || rtt->spill_request_tag < surface.second->last_rw_access_tag)
{
// We're not going to be spilling into system RAM. If a MSAA resolve target exists, remove it to save memory.
if (rtt->resolve_surface)
{
resolve_target_cache.emplace_back(std::move(rtt->resolve_surface));
rtt->msaa_flags |= rsx::surface_state_flags::require_resolve;
any_released |= true;
}
rtt->spill_request_tag = 0;
continue;
}
if (rtt->resolve_surface || rtt->samples() == 1)
{
// Can spill immediately. Do it.
rtt->spill(cmd, resolve_target_cache);
any_released |= true;
continue;
}
deferred_spills.push_back(rtt.get());
}
// 2. We should have enough discarded reusable memory for the second pass.
for (auto& surface : deferred_spills)
{
surface->spill(cmd, resolve_target_cache);
any_released |= true;
}
// 3. Discard the now-useless resolve cache memory
for (auto& data : resolve_target_cache)
{
gc->dispose(data);
}
};
relieve_memory_pressure(m_render_targets_storage);
relieve_memory_pressure(m_depth_stencil_storage);
}
return any_released;
@ -123,6 +175,63 @@ namespace vk
return (surface_cache_vram_load > surface_cache_allocation_quota);
}
bool surface_cache::spill_unused_memory()
{
// Determine how much memory we need to save to system RAM if any
const u64 current_surface_cache_memory = vk::vmm_get_application_pool_usage(VMM_ALLOCATION_POOL_SURFACE_CACHE);
const u64 total_device_memory = vk::get_current_renderer()->get_memory_mapping().device_local_total_bytes;
const u64 target_memory = get_surface_cache_memory_quota(total_device_memory);
rsx_log.warning("Surface cache memory usage is %lluM", current_surface_cache_memory / 0x100000);
if (current_surface_cache_memory < target_memory)
{
rsx_log.warning("Surface cache memory usage is very low. Will not spill contents to RAM");
return false;
}
// Very slow, but should only be called when the situation is dire
std::vector<render_target*> sorted_list;
sorted_list.reserve(m_render_targets_storage.size() + m_depth_stencil_storage.size());
auto process_list_function = [&](const auto& list)
{
for (auto& surface : list)
{
if (surface.second->value && !surface.second->is_bound)
{
sorted_list.push_back(surface.second.get());
}
}
};
process_list_function(m_render_targets_storage);
process_list_function(m_depth_stencil_storage);
std::sort(sorted_list.begin(), sorted_list.end(), [](const auto& a, const auto& b)
{
return a->last_rw_access_tag < b->last_rw_access_tag;
});
// Remove upto target_memory bytes from VRAM
u64 bytes_spilled = 0;
const u64 bytes_to_remove = current_surface_cache_memory - target_memory;
const u64 spill_time = rsx::get_shared_tag();
for (auto& surface : sorted_list)
{
bytes_spilled += surface->memory->size();
surface->spill_request_tag = spill_time;
if (bytes_spilled >= bytes_to_remove)
{
break;
}
}
rsx_log.warning("Surface cache will attempt to spill %llu bytes.", bytes_spilled);
return (bytes_spilled > 0);
}
// Get the linear resolve target bound to this surface. Initialize if none exists
vk::viewable_image* render_target::get_resolve_target_safe(vk::command_buffer& cmd)
{
@ -334,6 +443,156 @@ namespace vk
}
}
std::vector<VkBufferImageCopy> render_target::build_spill_transfer_descriptors(vk::image* target)
{
std::vector<VkBufferImageCopy> result;
result.reserve(2);
result.push_back({});
auto& rgn = result.back();
rgn.imageExtent.width = target->width();
rgn.imageExtent.height = target->height();
rgn.imageExtent.depth = 1;
rgn.imageSubresource.aspectMask = target->aspect();
rgn.imageSubresource.layerCount = 1;
if (aspect() == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))
{
result.push_back(rgn);
rgn.imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
result.back().imageSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
result.back().bufferOffset = target->width() * target->height() * 4;
}
return result;
}
void render_target::spill(vk::command_buffer& cmd, std::vector<std::unique_ptr<vk::viewable_image>>& resolve_cache)
{
ensure(value);
u64 element_size;
switch (const auto fmt = format())
{
case VK_FORMAT_D32_SFLOAT:
element_size = 4;
break;
case VK_FORMAT_D32_SFLOAT_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
element_size = 5;
break;
default:
element_size = get_format_texel_width(fmt);
}
vk::image* src = nullptr;
if (samples() == 1) [[likely]]
{
src = this;
}
else if (resolve_surface)
{
src = resolve_surface.get();
}
else
{
const auto transfer_w = width() * samples_x;
const auto transfer_h = height() * samples_y;
for (auto& surface : resolve_cache)
{
if (surface->format() == format() &&
surface->width() == transfer_w &&
surface->height() == transfer_h)
{
src = surface.get();
break;
}
}
if (!src)
{
if (vmm_determine_memory_load_severity() <= rsx::problem_severity::moderate)
{
// We have some freedom to allocate something. Add to the shared cache
src = get_resolve_target_safe(cmd);
}
else
{
// TODO: Spill to DMA buf
// For now, just skip this one if we don't have the capacity for it
rsx_log.warning("Could not spill memory due to resolve failure. Will ignore spilling for the moment.");
return;
}
}
msaa_flags |= rsx::surface_state_flags::require_resolve;
}
// If a resolve is requested, move data to the target
if (msaa_flags & rsx::surface_state_flags::require_resolve)
{
ensure(samples() > 1);
resolve(cmd);
}
const auto pdev = vk::get_current_renderer();
const auto alloc_size = element_size * src->width() * src->height();
m_spilled_mem = std::make_unique<vk::buffer>(*pdev, alloc_size, pdev->get_memory_mapping().host_visible_coherent,
0, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, 0, VMM_ALLOCATION_POOL_UNDEFINED);
const auto regions = build_spill_transfer_descriptors(src);
src->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vkCmdCopyImageToBuffer(cmd, src->value, src->current_layout, m_spilled_mem->value, ::size32(regions), regions.data());
// Destroy this object through a cloned object
auto obj = std::unique_ptr<viewable_image>(clone());
vk::get_resource_manager()->dispose(obj);
if (resolve_surface)
{
// Just add to the resolve cache and move on
resolve_cache.emplace_back(std::move(resolve_surface));
}
ensure(!memory && !value && views.empty() && !resolve_surface);
spill_request_tag = 0ull;
}
void render_target::unspill(vk::command_buffer& cmd)
{
// Recreate the image
const auto pdev = vk::get_current_renderer();
create_impl(*pdev, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, pdev->get_memory_mapping().device_local, VMM_ALLOCATION_POOL_SURFACE_CACHE);
change_layout(cmd, is_depth_surface() ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Load image from host-visible buffer
ensure(m_spilled_mem);
// Data transfer can be skipped if an erase command is being served
if (!(state_flags & rsx::surface_state_flags::erase_bkgnd))
{
// Warn. Ideally this should never happen if you have enough resources
rsx_log.warning("[PERFORMANCE WARNING] Loading spilled memory back to the GPU. You may want to lower your resolution scaling.");
vk::image* dst = (samples() > 1) ? get_resolve_target_safe(cmd) : this;
const auto regions = build_spill_transfer_descriptors(dst);
dst->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(cmd, m_spilled_mem->value, dst->value, dst->current_layout, ::size32(regions), regions.data());
if (samples() > 1)
{
msaa_flags &= ~rsx::surface_state_flags::require_resolve;
msaa_flags |= rsx::surface_state_flags::require_unresolve;
}
}
// Delete host-visible buffer
vk::get_resource_manager()->dispose(m_spilled_mem);
}
// Load memory from cell and use to initialize the surface
void render_target::load_memory(vk::command_buffer& cmd)
{
@ -426,6 +685,8 @@ namespace vk
vk::viewable_image* render_target::get_surface(rsx::surface_access access_type)
{
last_rw_access_tag = rsx::get_shared_tag();
if (samples() == 1 || access_type == rsx::surface_access::shader_write)
{
return this;
@ -491,6 +752,18 @@ namespace vk
void render_target::memory_barrier(vk::command_buffer& cmd, rsx::surface_access access)
{
if (access == rsx::surface_access::gpu_reference)
{
// This barrier only requires that an object is made available for GPU usage.
if (!value)
{
unspill(cmd);
}
spill_request_tag = 0;
return;
}
const bool is_depth = is_depth_surface();
const bool should_read_buffers = is_depth ? !!g_cfg.video.read_depth_buffer : !!g_cfg.video.read_color_buffers;
@ -506,6 +779,12 @@ namespace vk
}
}
// Unspill here, because erase flag may have been set above.
if (!value)
{
unspill(cmd);
}
if (access == rsx::surface_access::shader_write && write_barrier_sync_tag != 0)
{
if (current_layout == VK_IMAGE_LAYOUT_GENERAL)

View File

@ -24,6 +24,9 @@ namespace vk
u64 cyclic_reference_sync_tag = 0;
u64 write_barrier_sync_tag = 0;
// Memory spilling support
std::unique_ptr<vk::buffer> m_spilled_mem;
// MSAA support:
// Get the linear resolve target bound to this surface. Initialize if none exists
vk::viewable_image* get_resolve_target_safe(vk::command_buffer& cmd);
@ -40,8 +43,17 @@ namespace vk
// Generic - chooses whether to clear or load.
void initialize_memory(vk::command_buffer& cmd, rsx::surface_access access);
// Spill helpers
// Re-initialize using spilled memory
void unspill(vk::command_buffer& cmd);
// Build spill transfer descriptors
std::vector<VkBufferImageCopy> build_spill_transfer_descriptors(vk::image* target);
public:
u64 frame_tag = 0; // frame id when invalidated, 0 if not invalid
u64 frame_tag = 0; // frame id when invalidated, 0 if not invalid
u64 last_rw_access_tag = 0; // timestamp when this object was last used
u64 spill_request_tag = 0; // timestamp when spilling was requested
bool is_bound = false; // set when the surface is bound for rendering
using viewable_image::viewable_image;
@ -54,6 +66,9 @@ namespace vk
image_view* get_view(u32 remap_encoding, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap,
VkImageAspectFlags mask = VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT) override;
// Memory management
void spill(vk::command_buffer& cmd, std::vector<std::unique_ptr<vk::viewable_image>>& resolve_cache);
// Synchronization
void texture_barrier(vk::command_buffer& cmd);
void memory_barrier(vk::command_buffer& cmd, rsx::surface_access access);
@ -270,13 +285,16 @@ namespace vk
static bool is_compatible_surface(const vk::render_target* surface, const vk::render_target* ref, u16 width, u16 height, u8 sample_count)
{
return (surface->format() == ref->format() &&
surface->get_spp() == sample_count &&
surface->get_surface_width() >= width &&
surface->get_surface_height() >= height);
surface->get_spp() == sample_count &&
surface->get_surface_width() >= width &&
surface->get_surface_height() >= height);
}
static void prepare_surface_for_drawing(vk::command_buffer& cmd, vk::render_target* surface)
{
// Special case barrier
surface->memory_barrier(cmd, rsx::surface_access::gpu_reference);
if (surface->aspect() == VK_IMAGE_ASPECT_COLOR_BIT)
{
surface->change_layout(cmd, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
@ -288,10 +306,13 @@ namespace vk
surface->reset_surface_counters();
surface->memory_usage_flags |= rsx::surface_usage_flags::attachment;
surface->is_bound = true;
}
static void prepare_surface_for_sampling(vk::command_buffer& /*cmd*/, vk::render_target* /*surface*/)
{}
static void prepare_surface_for_sampling(vk::command_buffer& /*cmd*/, vk::render_target* surface)
{
surface->is_bound = false;
}
static bool surface_is_pitch_compatible(const std::unique_ptr<vk::render_target>& surface, usz pitch)
{
@ -385,9 +406,11 @@ namespace vk
public:
void destroy();
bool spill_unused_memory();
bool is_overallocated();
bool can_collapse_surface(const std::unique_ptr<vk::render_target>& surface) override;
bool handle_memory_pressure(vk::command_buffer& cmd, rsx::problem_severity severity) override;
void free_invalidated(vk::command_buffer& cmd, rsx::problem_severity memory_pressure);
};
}
//h