SPU Interrupt Enable Status implemented

SPU Interrupts are still NOT implemented
This commit is contained in:
Nekotekina 2015-07-16 14:32:19 +03:00
parent 1519a2b468
commit 5bd83516ba
7 changed files with 121 additions and 79 deletions

View File

@ -224,9 +224,15 @@ bool RawSPUThread::WriteReg(const u32 addr, const u32 value)
void RawSPUThread::Task() void RawSPUThread::Task()
{ {
PC = npc.exchange(0) & ~3; // get next PC and SPU Interrupt status
PC = npc.exchange(0);
set_interrupt_status((PC & 1) != 0);
PC &= 0x3FFFC;
SPUThread::Task(); SPUThread::Task();
npc.store(PC | 1); // save next PC and current SPU Interrupt status
npc.store(PC | ((ch_event_stat.load() & SPU_EVENT_INTR_ENABLED) != 0));
} }

View File

@ -25,6 +25,24 @@ void spu_interpreter::DEFAULT(SPUThread& CPU, spu_opcode_t op)
} }
void spu_interpreter::set_interrupt_status(SPUThread& CPU, spu_opcode_t op)
{
if (op.e)
{
CPU.set_interrupt_status(true);
if (op.d)
{
throw EXCEPTION("Undefined behaviour");
}
}
else if (op.d)
{
CPU.set_interrupt_status(false);
}
}
void spu_interpreter::STOP(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::STOP(SPUThread& CPU, spu_opcode_t op)
{ {
CPU.stop_and_signal(op.opcode & 0x3fff); CPU.stop_and_signal(op.opcode & 0x3fff);
@ -272,53 +290,37 @@ void spu_interpreter::WRCH(SPUThread& CPU, spu_opcode_t op)
void spu_interpreter::BIZ(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BIZ(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
if (CPU.GPR[op.rt]._u32[3] == 0) if (CPU.GPR[op.rt]._u32[3] == 0)
{ {
CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4; CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4;
set_interrupt_status(CPU, op);
} }
} }
void spu_interpreter::BINZ(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BINZ(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
if (CPU.GPR[op.rt]._u32[3] != 0) if (CPU.GPR[op.rt]._u32[3] != 0)
{ {
CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4; CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4;
set_interrupt_status(CPU, op);
} }
} }
void spu_interpreter::BIHZ(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BIHZ(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
if (CPU.GPR[op.rt]._u16[6] == 0) if (CPU.GPR[op.rt]._u16[6] == 0)
{ {
CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4; CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4;
set_interrupt_status(CPU, op);
} }
} }
void spu_interpreter::BIHNZ(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BIHNZ(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
if (CPU.GPR[op.rt]._u16[6] != 0) if (CPU.GPR[op.rt]._u16[6] != 0)
{ {
CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4; CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4;
set_interrupt_status(CPU, op);
} }
} }
@ -334,24 +336,16 @@ void spu_interpreter::STQX(SPUThread& CPU, spu_opcode_t op)
void spu_interpreter::BI(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BI(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4; CPU.PC = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0) - 4;
set_interrupt_status(CPU, op);
} }
void spu_interpreter::BISL(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::BISL(SPUThread& CPU, spu_opcode_t op)
{ {
if (op.d || op.e)
{
throw EXCEPTION("Unimplemented interrupt flags (d=%d, e=%d)", op.d, op.e);
}
const u32 target = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0); const u32 target = SPUOpcodes::branchTarget(CPU.GPR[op.ra]._u32[3], 0);
CPU.GPR[op.rt] = u128::from32r(CPU.PC + 4); CPU.GPR[op.rt] = u128::from32r(CPU.PC + 4);
CPU.PC = target - 4; CPU.PC = target - 4;
set_interrupt_status(CPU, op);
} }
void spu_interpreter::IRET(SPUThread& CPU, spu_opcode_t op) void spu_interpreter::IRET(SPUThread& CPU, spu_opcode_t op)

View File

@ -315,17 +315,19 @@ private:
} }
void BIZ(u32 intr, u32 rt, u32 ra) void BIZ(u32 intr, u32 rt, u32 ra)
{ {
switch (intr & 0x30)
{
case 0: break;
default: UNIMPLEMENTED(); return;
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
if (CPU.GPR[rt]._u32[3] == 0) if (CPU.GPR[rt]._u32[3] == 0)
{ {
LOG5_OPCODE("taken (0x%x)", target); LOG5_OPCODE("taken (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
switch (intr & 0x30)
{
case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return;
}
} }
else else
{ {
@ -334,17 +336,19 @@ private:
} }
void BINZ(u32 intr, u32 rt, u32 ra) void BINZ(u32 intr, u32 rt, u32 ra)
{ {
switch (intr & 0x30)
{
case 0: break;
default: UNIMPLEMENTED(); return;
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
if (CPU.GPR[rt]._u32[3] != 0) if (CPU.GPR[rt]._u32[3] != 0)
{ {
LOG5_OPCODE("taken (0x%x)", target); LOG5_OPCODE("taken (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
switch (intr & 0x30)
{
case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return;
}
} }
else else
{ {
@ -353,17 +357,19 @@ private:
} }
void BIHZ(u32 intr, u32 rt, u32 ra) void BIHZ(u32 intr, u32 rt, u32 ra)
{ {
switch (intr & 0x30)
{
case 0: break;
default: UNIMPLEMENTED(); return;
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
if (CPU.GPR[rt]._u16[6] == 0) if (CPU.GPR[rt]._u16[6] == 0)
{ {
LOG5_OPCODE("taken (0x%x)", target); LOG5_OPCODE("taken (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
switch (intr & 0x30)
{
case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return;
}
} }
else else
{ {
@ -372,17 +378,19 @@ private:
} }
void BIHNZ(u32 intr, u32 rt, u32 ra) void BIHNZ(u32 intr, u32 rt, u32 ra)
{ {
switch (intr & 0x30)
{
case 0: break;
default: UNIMPLEMENTED(); return;
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
if (CPU.GPR[rt]._u16[6] != 0) if (CPU.GPR[rt]._u16[6] != 0)
{ {
LOG5_OPCODE("taken (0x%x)", target); LOG5_OPCODE("taken (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
switch (intr & 0x30)
{
case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return;
}
} }
else else
{ {
@ -401,28 +409,32 @@ private:
} }
void BI(u32 intr, u32 ra) void BI(u32 intr, u32 ra)
{ {
switch (intr & 0x30)
{
case 0: break;
default: UNIMPLEMENTED(); return;
}
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
LOG5_OPCODE("branch (0x%x)", target); LOG5_OPCODE("branch (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
}
void BISL(u32 intr, u32 rt, u32 ra)
{
switch (intr & 0x30) switch (intr & 0x30)
{ {
case 0: break; case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return; default: UNIMPLEMENTED(); return;
} }
}
void BISL(u32 intr, u32 rt, u32 ra)
{
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
CPU.GPR[rt] = u128::from32r(CPU.PC + 4); CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
LOG5_OPCODE("branch (0x%x)", target); LOG5_OPCODE("branch (0x%x)", target);
CPU.PC = target - 4; CPU.PC = target - 4;
switch (intr & 0x30)
{
case 0: break;
case 0x10: CPU.set_interrupt_status(true);
case 0x20: CPU.set_interrupt_status(false);
default: UNIMPLEMENTED(); return;
}
} }
void IRET(u32 ra) void IRET(u32 ra)
{ {

View File

@ -88,6 +88,8 @@ namespace spu_interpreter
{ {
void DEFAULT(SPUThread& CPU, spu_opcode_t op); void DEFAULT(SPUThread& CPU, spu_opcode_t op);
void set_interrupt_status(SPUThread& CPU, spu_opcode_t op);
void STOP(SPUThread& CPU, spu_opcode_t op); void STOP(SPUThread& CPU, spu_opcode_t op);
void LNOP(SPUThread& CPU, spu_opcode_t op); void LNOP(SPUThread& CPU, spu_opcode_t op);
void SYNC(SPUThread& CPU, spu_opcode_t op); void SYNC(SPUThread& CPU, spu_opcode_t op);

View File

@ -208,7 +208,7 @@ void SPUThread::InitRegs()
ch_snr1 = {}; ch_snr1 = {};
ch_snr2 = {}; ch_snr2 = {};
ch_event_mask = 0; ch_event_mask = {};
ch_event_stat = {}; ch_event_stat = {};
last_raddr = 0; last_raddr = 0;
@ -548,7 +548,7 @@ u32 SPUThread::get_events(bool waiting)
// polling with atomically set/removed SPU_EVENT_WAITING flag // polling with atomically set/removed SPU_EVENT_WAITING flag
return ch_event_stat.atomic_op([this](u32& stat) -> u32 return ch_event_stat.atomic_op([this](u32& stat) -> u32
{ {
if (u32 res = stat & ch_event_mask) if (u32 res = stat & ch_event_mask.load())
{ {
stat &= ~SPU_EVENT_WAITING; stat &= ~SPU_EVENT_WAITING;
return res; return res;
@ -562,7 +562,7 @@ u32 SPUThread::get_events(bool waiting)
} }
// simple polling // simple polling
return ch_event_stat.load() & ch_event_mask; return ch_event_stat.load() & ch_event_mask.load();
} }
void SPUThread::set_events(u32 mask) void SPUThread::set_events(u32 mask)
@ -587,6 +587,24 @@ void SPUThread::set_events(u32 mask)
} }
} }
void SPUThread::set_interrupt_status(bool enable)
{
if (enable)
{
// detect enabling interrupts with events masked
if (u32 mask = ch_event_mask.load())
{
throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", mask);
}
ch_event_stat |= SPU_EVENT_INTR_ENABLED;
}
else
{
ch_event_stat &= ~SPU_EVENT_INTR_ENABLED;
}
}
u32 SPUThread::get_ch_count(u32 ch) u32 SPUThread::get_ch_count(u32 ch)
{ {
if (Ini.HLELogging.GetValue()) if (Ini.HLELogging.GetValue())
@ -716,7 +734,7 @@ u32 SPUThread::get_ch_value(u32 ch)
case SPU_RdEventMask: case SPU_RdEventMask:
{ {
return ch_event_mask; return ch_event_mask.load();
} }
case SPU_RdEventStat: case SPU_RdEventStat:
@ -729,7 +747,7 @@ u32 SPUThread::get_ch_value(u32 ch)
return res; return res;
} }
if (ch_event_mask & SPU_EVENT_LR) if (ch_event_mask.load() & SPU_EVENT_LR)
{ {
// register waiter if polling reservation status is required // register waiter if polling reservation status is required
vm::wait_op(*this, last_raddr, 128, WRAP_EXPR(get_events(true) || IsStopped())); vm::wait_op(*this, last_raddr, 128, WRAP_EXPR(get_events(true) || IsStopped()));
@ -756,7 +774,9 @@ u32 SPUThread::get_ch_value(u32 ch)
case SPU_RdMachStat: case SPU_RdMachStat:
{ {
return 0; // hack (not isolated, interrupts disabled) // HACK: "Not isolated" status
// Return SPU Interrupt status in LSB
return (ch_event_stat.load() & SPU_EVENT_INTR_ENABLED) != 0;
} }
} }
@ -1107,12 +1127,19 @@ void SPUThread::set_ch_value(u32 ch, u32 value)
case SPU_WrEventMask: case SPU_WrEventMask:
{ {
// detect masking events with enabled interrupt status
if (value && ch_event_stat.load() & SPU_EVENT_INTR_ENABLED)
{
throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", value);
}
// detect masking unimplemented events
if (value & ~SPU_EVENT_IMPLEMENTED) if (value & ~SPU_EVENT_IMPLEMENTED)
{ {
break; break;
} }
ch_event_mask = value; ch_event_mask.store(value);
return; return;
} }

View File

@ -65,7 +65,9 @@ enum : u32
SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR, // Mask of implemented events SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR, // Mask of implemented events
SPU_EVENT_WAITING = 0x80000000, // This bit is originally unused, set when SPU thread starts waiting on ch_event_stat SPU_EVENT_WAITING = 0x80000000, // Originally unused, set when SPU thread starts waiting on ch_event_stat
//SPU_EVENT_AVAILABLE = 0x40000000, // Originally unused, channel count of the SPU_RdEventStat channel
SPU_EVENT_INTR_ENABLED = 0x20000000, // Originally unused, represents "SPU Interrupts Enabled" status
}; };
// SPU Class 0 Interrupts // SPU Class 0 Interrupts
@ -502,7 +504,7 @@ public:
spu_channel_t ch_snr1; // SPU Signal Notification Register 1 spu_channel_t ch_snr1; // SPU Signal Notification Register 1
spu_channel_t ch_snr2; // SPU Signal Notification Register 2 spu_channel_t ch_snr2; // SPU Signal Notification Register 2
u32 ch_event_mask; atomic_t<u32> ch_event_mask;
atomic_t<u32> ch_event_stat; atomic_t<u32> ch_event_stat;
u32 last_raddr; // Last Reservation Address (0 if not set) u32 last_raddr; // Last Reservation Address (0 if not set)
@ -558,6 +560,7 @@ public:
u32 get_events(bool waiting = false); u32 get_events(bool waiting = false);
void set_events(u32 mask); void set_events(u32 mask);
void set_interrupt_status(bool enable);
u32 get_ch_count(u32 ch); u32 get_ch_count(u32 ch);
u32 get_ch_value(u32 ch); u32 get_ch_value(u32 ch);
void set_ch_value(u32 ch, u32 value); void set_ch_value(u32 ch, u32 value);

View File

@ -222,13 +222,12 @@ namespace vm
} }
catch (...) catch (...)
{ {
// catch exception thrown by predicate // capture any exception possibly thrown by predicate
auto exception = std::current_exception(); auto exception = std::current_exception();
// set new predicate that will throw this exception from the original thread // set new predicate that will throw this exception from the original thread
pred = [exception]() -> bool pred = [exception]() -> bool
{ {
// rethrow exception
std::rethrow_exception(exception); std::rethrow_exception(exception);
// dummy return value // dummy return value
@ -241,10 +240,9 @@ namespace vm
return true; return true;
} }
// clear predicate if succeeded // clear predicate and signal
pred = nullptr; pred = nullptr;
// signal if succeeded or an exception thrown
if (!thread->Signal()) if (!thread->Signal())
{ {
throw EXCEPTION("Thread already signaled"); throw EXCEPTION("Thread already signaled");