SPURS: Update system service workload to use lock line reservations

This commit is contained in:
S Gopal Rajagopal 2015-01-31 00:36:58 +05:30
parent 62e2d8d9a7
commit 507638e6d8
3 changed files with 255 additions and 161 deletions

View File

@ -511,7 +511,7 @@ public:
void WriteLS64 (const u32 lsa, const u64& data) const { vm::write64 (lsa + m_offset, data); }
void WriteLS128(const u32 lsa, const u128& data) const { vm::write128(lsa + m_offset, data); }
void RegisterHleFuncion(u32 addr, std::function<bool(SPUThread & SPU)> function)
void RegisterHleFunction(u32 addr, std::function<bool(SPUThread & SPU)> function)
{
m_addr_to_hle_function_map[addr] = function;
WriteLS32(addr, 0x00000003); // STOP 3

View File

@ -182,7 +182,7 @@ s64 spursInit(
{
auto spu = spu_thread_initialize(tg, num, spurs->m.spuImg, name, SYS_SPU_THREAD_OPTION_DEC_SYNC_TB_ENABLE, num, spurs.addr(), 0, 0);
#ifndef PRX_DEBUG_XXX
spu->RegisterHleFuncion(spurs->m.spuImg.entry_point, spursKernelMain);
spu->RegisterHleFunction(spurs->m.spuImg.entry_point, spursKernelMain);
#endif
spurs->m.spus[num] = spu->GetId();
}

View File

@ -17,6 +17,7 @@ u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status);
bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag);
u32 spursDmaGetCompletionStatus(SPUThread & spu, u32 tagMask);
u32 spursDmaWaitForCompletion(SPUThread & spu, u32 tagMask, bool waitForAll = true);
void spursHalt();
//
// SPURS Kernel functions
@ -111,6 +112,12 @@ u32 spursDmaWaitForCompletion(SPUThread & spu, u32 tagMask, bool waitForAll) {
return rv._u32[3];
}
// Halt the SPU
void spursHalt(SPUThread & spu) {
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT);
spu.Stop();
}
//////////////////////////////////////////////////////////////////////////////
// SPURS kernel functions
//////////////////////////////////////////////////////////////////////////////
@ -130,7 +137,7 @@ bool spursKernel1SelectWorkload(SPUThread & spu) {
do {
// DMA and lock the first 0x80 bytes of spurs
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
CellSpurs * spurs = (CellSpurs *)mgmt->tempArea;
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
// Calculate the contention (number of SPUs used) for each workload
u8 contention[CELL_SPURS_MAX_WORKLOAD];
@ -279,7 +286,7 @@ bool spursKernel2SelectWorkload(SPUThread & spu) {
do {
// DMA and lock the first 0x80 bytes of spurs
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
CellSpurs * spurs = (CellSpurs *)mgmt->tempArea;
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
// Calculate the contention (number of SPUs used) for each workload
u8 contention[CELL_SPURS_MAX_WORKLOAD2];
@ -408,8 +415,8 @@ bool spursKernelMain(SPUThread & spu) {
SpursKernelMgmtData * mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
bool isKernel2;
u32 pollStatus;
const CellSpurs::WorkloadInfo * wklInfo;
u32 pollStatus;
u64 wklArg;
if (spu.PC == CELL_SPURS_KERNEL1_ENTRY_ADDR || spu.PC == CELL_SPURS_KERNEL2_ENTRY_ADDR) {
// Entry point of SPURS kernel
// Save arguments
@ -440,14 +447,15 @@ bool spursKernelMain(SPUThread & spu) {
mgmt->guid[3] = 0x43A3C982;
}
// Register SPURS kernel HLE functions
spu.UnregisterHleFunctions(0, 0x40000); // TODO: use a symbolic constant
spu.RegisterHleFuncion(isKernel2 ? CELL_SPURS_KERNEL2_ENTRY_ADDR : CELL_SPURS_KERNEL1_ENTRY_ADDR, spursKernelMain);
spu.RegisterHleFuncion(mgmt->yieldToKernelAddr, spursKernelMain);
spu.RegisterHleFuncion(mgmt->selectWorkloadAddr, isKernel2 ? spursKernel2SelectWorkload : spursKernel1SelectWorkload);
spu.RegisterHleFunction(isKernel2 ? CELL_SPURS_KERNEL2_ENTRY_ADDR : CELL_SPURS_KERNEL1_ENTRY_ADDR, spursKernelMain);
spu.RegisterHleFunction(mgmt->yieldToKernelAddr, spursKernelMain);
spu.RegisterHleFunction(mgmt->selectWorkloadAddr, isKernel2 ? spursKernel2SelectWorkload : spursKernel1SelectWorkload);
// Start the system service workload
spu.RegisterHleFuncion(0xA00, spursSysServiceWorkloadEntry);
wklInfo = &mgmt->spurs->m.wklInfoSysSrv;
// Register the system HLE service workload entry point
spu.RegisterHleFunction(0xA00, spursSysServiceWorkloadEntry);
wklArg = mgmt->spurs->m.wklInfoSysSrv.arg;
pollStatus = 0;
} else if (spu.PC == mgmt->yieldToKernelAddr) {
isKernel2 = mgmt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
@ -460,10 +468,11 @@ bool spursKernelMain(SPUThread & spu) {
spursKernel1SelectWorkload(spu);
}
pollStatus = (u32)(spu.GPR[3]._u64[1]);
auto wid = (u32)(spu.GPR[3]._u64[1] >> 32);
wklInfo = wid < CELL_SPURS_MAX_WORKLOAD ? &mgmt->spurs->m.wklInfo1[wid] :
(wid < CELL_SPURS_MAX_WORKLOAD2 && isKernel2 ? &mgmt->spurs->m.wklInfo2[wid & 0xf] : &mgmt->spurs->m.wklInfoSysSrv);
pollStatus = (u32)(spu.GPR[3]._u64[1]);
auto wid = (u32)(spu.GPR[3]._u64[1] >> 32);
auto wklInfo = wid < CELL_SPURS_MAX_WORKLOAD ? &mgmt->spurs->m.wklInfo1[wid] : (wid < CELL_SPURS_MAX_WORKLOAD2 && isKernel2 ? &mgmt->spurs->m.wklInfo2[wid & 0xf] :
&mgmt->spurs->m.wklInfoSysSrv);
wklArg = wklInfo->arg;
} else {
assert(0);
}
@ -477,7 +486,7 @@ bool spursKernelMain(SPUThread & spu) {
spu.GPR[0]._u32[3] = mgmt->yieldToKernelAddr;
spu.GPR[1]._u32[3] = 0x3FFB0;
spu.GPR[3]._u32[3] = 0x100;
spu.GPR[4]._u64[1] = wklInfo->arg;
spu.GPR[4]._u64[1] = wklArg;
spu.GPR[5]._u32[3] = pollStatus;
spu.SetBranch(0xA00);
return false;
@ -489,33 +498,48 @@ bool spursKernelMain(SPUThread & spu) {
/// Restore scheduling parameters after a workload has been preempted by the system service workload
void spursSysServiceCleanupAfterPreemption(SPUThread & spu, SpursKernelMgmtData * mgmt) {
if (mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum] != 0xFF) {
auto wklId = mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum];
mgmt->spurs->m.sysSrvWorkload[mgmt->spuNum] = 0xFF;
u8 wklId;
spursSysServiceUpdateWorkload(spu, mgmt);
if (wklId >= CELL_SPURS_MAX_WORKLOAD) {
mgmt->spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x10;
mgmt->spurs->m.wklReadyCount1[wklId & 0x0F].write_relaxed(mgmt->spurs->m.wklReadyCount1[wklId & 0x0F].read_relaxed() - 1);
} else {
mgmt->spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x01;
mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1);
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
if (spurs->m.sysSrvWorkload[mgmt->spuNum] == 0xFF) {
return;
}
// Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace
// uses the current worload id to determine the workload to which the trace belongs
auto wklIdSaved = mgmt->wklCurrentId;
mgmt->wklCurrentId = wklId;
wklId = spurs->m.sysSrvWorkload[mgmt->spuNum];
spurs->m.sysSrvWorkload[mgmt->spuNum] = 0xFF;
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
// Trace - STOP: GUID
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_STOP;
pkt.data.stop = SPURS_GUID_SYS_WKL;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
spursSysServiceUpdateWorkload(spu, mgmt);
mgmt->wklCurrentId = wklIdSaved;
}
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
if (wklId >= CELL_SPURS_MAX_WORKLOAD) {
spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x10;
spurs->m.wklReadyCount1[wklId & 0x0F].write_relaxed(spurs->m.wklReadyCount1[wklId & 0x0F].read_relaxed() - 1);
} else {
spurs->m.wklCurrentContention[wklId & 0x0F] -= 0x01;
spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1);
}
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
// Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace
// uses the current worload id to determine the workload to which the trace belongs
auto wklIdSaved = mgmt->wklCurrentId;
mgmt->wklCurrentId = wklId;
// Trace - STOP: GUID
CellSpursTracePacket pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.header.tag = CELL_SPURS_TRACE_TAG_STOP;
pkt.data.stop = SPURS_GUID_SYS_WKL;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
mgmt->wklCurrentId = wklIdSaved;
}
/// Update the trace count for this SPU in CellSpurs
@ -528,39 +552,52 @@ void spursSysServiceUpdateTraceCount(SPUThread & spu, SpursKernelMgmtData * mgmt
/// Update trace control in SPU from CellSpurs
void spursSysServiceUpdateTrace(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 arg2, u32 arg3, u32 arg4) {
auto sysSrvMsgUpdateTrace = mgmt->spurs->m.sysSrvMsgUpdateTrace;
mgmt->spurs->m.sysSrvMsgUpdateTrace &= ~(1 << mgmt->spuNum);
mgmt->spurs->m.xCC &= ~(1 << mgmt->spuNum);
mgmt->spurs->m.xCC |= arg2 << mgmt->spuNum;
bool notify;
bool notify = false;
if (((sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.sysSrvMsgUpdateTrace == 0) && (mgmt->spurs->m.xCD != 0)) {
mgmt->spurs->m.xCD = 0;
notify = true;
}
u8 sysSrvMsgUpdateTrace;
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
if (arg4 && mgmt->spurs->m.xCD != 0) {
mgmt->spurs->m.xCD = 0;
notify = true;
}
sysSrvMsgUpdateTrace = spurs->m.sysSrvMsgUpdateTrace;
spurs->m.sysSrvMsgUpdateTrace &= ~(1 << mgmt->spuNum);
spurs->m.xCC &= ~(1 << mgmt->spuNum);
spurs->m.xCC |= arg2 << mgmt->spuNum;
notify = false;
if (((sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) != 0) && (spurs->m.sysSrvMsgUpdateTrace == 0) && (spurs->m.xCD != 0)) {
spurs->m.xCD = 0;
notify = true;
}
if (arg4 && spurs->m.xCD != 0) {
spurs->m.xCD = 0;
notify = true;
}
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
// Get trace parameters from CellSpurs and store them in the LS
if (((sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) != 0) || (arg3 != 0)) {
if (mgmt->traceMsgCount != 0xFF || mgmt->spurs->m.traceBuffer.addr() == 0) {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.traceBuffer), 0x80/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x80 - offsetof(CellSpurs, m.traceBuffer));
if (mgmt->traceMsgCount != 0xFF || spurs->m.traceBuffer.addr() == 0) {
spursSysServiceUpdateTraceCount(spu, mgmt);
} else {
mgmt->traceMsgCount = mgmt->spurs->m.traceBuffer->count[mgmt->spuNum];
spursDma(spu, MFC_GET_CMD, spurs->m.traceBuffer.addr() & 0xFFFFFFFC, 0x2C00/*LSA*/, 0x80/*size*/, mgmt->dmaTagId);
auto traceBuffer = vm::get_ptr<CellSpursTraceInfo>(spu.ls_offset + 0x2C00);
mgmt->traceMsgCount = traceBuffer->count[mgmt->spuNum];
}
mgmt->traceBuffer = mgmt->spurs->m.traceBuffer.addr() + (mgmt->spurs->m.traceStartIndex[mgmt->spuNum] << 4);
mgmt->traceMaxCount = mgmt->spurs->m.traceStartIndex[1] - mgmt->spurs->m.traceStartIndex[0];
mgmt->traceBuffer = spurs->m.traceBuffer.addr() + (spurs->m.traceStartIndex[mgmt->spuNum] << 4);
mgmt->traceMaxCount = spurs->m.traceStartIndex[1] - spurs->m.traceStartIndex[0];
if (mgmt->traceBuffer == 0) {
mgmt->traceMsgCount = 0;
}
}
if (notify) {
// TODO: sys_spu_thread_send_event(mgmt->spurs->m.spuPort, 2, 0);
// TODO: sys_spu_thread_send_event(spurs->m.spuPort, 2, 0);
}
}
@ -568,81 +605,108 @@ void spursSysServiceUpdateTrace(SPUThread & spu, SpursKernelMgmtData * mgmt, u32
void spursSysServiceUpdateEvent(SPUThread & spu, SpursKernelMgmtData * mgmt, u32 wklShutdownBitSet) {
// Mark the workloads in wklShutdownBitSet as completed and also generate a bit set of the completed
// workloads that have a shutdown completion hook registered
u32 wklNotifyBitSet = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
if (wklShutdownBitSet & (0x80000000u >> i)) {
mgmt->spurs->m.wklEvent1[i] |= 0x01;
if (mgmt->spurs->m.wklEvent1[i] & 0x02 || mgmt->spurs->m.wklEvent1[i] & 0x10) {
wklNotifyBitSet |= 0x80000000u >> i;
}
}
u32 wklNotifyBitSet;
u8 spuPort;
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
if (wklShutdownBitSet & (0x8000 >> i)) {
mgmt->spurs->m.wklEvent2[i] |= 0x01;
if (mgmt->spurs->m.wklEvent2[i] & 0x02 || mgmt->spurs->m.wklEvent2[i] & 0x10) {
wklNotifyBitSet |= 0x8000 >> i;
wklNotifyBitSet = 0;
spuPort = spurs->m.spuPort;;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
if (wklShutdownBitSet & (0x80000000u >> i)) {
spurs->m.wklEvent1[i] |= 0x01;
if (spurs->m.wklEvent1[i] & 0x02 || spurs->m.wklEvent1[i] & 0x10) {
wklNotifyBitSet |= 0x80000000u >> i;
}
}
if (wklShutdownBitSet & (0x8000 >> i)) {
spurs->m.wklEvent2[i] |= 0x01;
if (spurs->m.wklEvent2[i] & 0x02 || spurs->m.wklEvent2[i] & 0x10) {
wklNotifyBitSet |= 0x8000 >> i;
}
}
}
}
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
if (wklNotifyBitSet) {
// TODO: sys_spu_thread_send_event(mgmt->spurs->m.spuPort, 0, wklNotifyMask);
// TODO: sys_spu_thread_send_event(spuPort, 0, wklNotifyMask);
}
}
/// Update workload information in the SPU from CellSpurs
void spursSysServiceUpdateWorkload(SPUThread & spu, SpursKernelMgmtData * mgmt) {
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
spursDma(spu, MFC_GET_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklInfo1), 0x30000/*LSA*/, 0x200/*size*/, CELL_SPURS_KERNEL_DMA_TAG_ID);
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
spursDma(spu, MFC_GET_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklInfo2), 0x30200/*LSA*/, 0x200/*size*/, CELL_SPURS_KERNEL_DMA_TAG_ID);
}
u32 wklShutdownBitSet = 0;
mgmt->wklRunnable1 = 0;
mgmt->wklRunnable2 = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
auto wklInfo1 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30000);
// Copy the priority of the workload for this SPU and its unique id to the LS
mgmt->priority[i] = mgmt->spurs->m.wklInfo1[i].priority[mgmt->spuNum] == 0 ? 0 : 0x10 - mgmt->spurs->m.wklInfo1[i].priority[mgmt->spuNum];
mgmt->wklUniqueId[i] = mgmt->spurs->m.wklInfo1[i].uniqueId.read_relaxed();
mgmt->priority[i] = wklInfo1[i].priority[mgmt->spuNum] == 0 ? 0 : 0x10 - wklInfo1[i].priority[mgmt->spuNum];
mgmt->wklUniqueId[i] = wklInfo1[i].uniqueId.read_relaxed();
// Update workload status and runnable flag based on the workload state
auto wklStatus = mgmt->spurs->m.wklStatus1[i];
if (mgmt->spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
mgmt->spurs->m.wklStatus1[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable1 |= 0x8000 >> i;
} else {
mgmt->spurs->m.wklStatus1[i] &= ~(1 << mgmt->spuNum);
}
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
auto wklInfo2 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30200);
// If the workload is shutting down and if this is the last SPU from which it is being removed then
// add it to the shutdown bit set
if (mgmt->spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.wklStatus1[i] == 0)) {
mgmt->spurs->m.wklState1[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x80000000u >> i;
}
}
if (mgmt->spurs->m.flags1 & SF1_32_WORKLOADS) {
// Copy the priority of the workload for this SPU to the LS
if (mgmt->spurs->m.wklInfo2[i].priority[mgmt->spuNum]) {
mgmt->priority[i] |= (0x10 - mgmt->spurs->m.wklInfo2[i].priority[mgmt->spuNum]) << 4;
if (wklInfo2[i].priority[mgmt->spuNum]) {
mgmt->priority[i] |= (0x10 - wklInfo2[i].priority[mgmt->spuNum]) << 4;
}
}
}
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
// Update workload status and runnable flag based on the workload state
wklStatus = mgmt->spurs->m.wklStatus2[i];
if (mgmt->spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
mgmt->spurs->m.wklStatus2[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable2 |= 0x8000 >> i;
auto wklStatus = spurs->m.wklStatus1[i];
if (spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
spurs->m.wklStatus1[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable1 |= 0x8000 >> i;
} else {
mgmt->spurs->m.wklStatus2[i] &= ~(1 << mgmt->spuNum);
spurs->m.wklStatus1[i] &= ~(1 << mgmt->spuNum);
}
// If the workload is shutting down and if this is the last SPU from which it is being removed then
// add it to the shutdown bit set
if (mgmt->spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (mgmt->spurs->m.wklStatus2[i] == 0)) {
mgmt->spurs->m.wklState2[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x8000 >> i;
if (spurs->m.wklState1[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (spurs->m.wklStatus1[i] == 0)) {
spurs->m.wklState1[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x80000000u >> i;
}
}
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
// Update workload status and runnable flag based on the workload state
wklStatus = spurs->m.wklStatus2[i];
if (spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_RUNNABLE) {
spurs->m.wklStatus2[i] |= 1 << mgmt->spuNum;
mgmt->wklRunnable2 |= 0x8000 >> i;
} else {
spurs->m.wklStatus2[i] &= ~(1 << mgmt->spuNum);
}
// If the workload is shutting down and if this is the last SPU from which it is being removed then
// add it to the shutdown bit set
if (spurs->m.wklState2[i].read_relaxed() == SPURS_WKL_STATE_SHUTTING_DOWN) {
if (((wklStatus & (1 << mgmt->spuNum)) != 0) && (spurs->m.wklStatus2[i] == 0)) {
spurs->m.wklState2[i].write_relaxed(SPURS_WKL_STATE_REMOVABLE);
wklShutdownBitSet |= 0x8000 >> i;
}
}
}
}
}
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
if (wklShutdownBitSet) {
spursSysServiceUpdateEvent(spu, mgmt, wklShutdownBitSet);
@ -651,57 +715,85 @@ void spursSysServiceUpdateWorkload(SPUThread & spu, SpursKernelMgmtData * mgmt)
/// Process any messages
void spursSysServiceProcessMessages(SPUThread & spu, SpursKernelMgmtData * mgmt) {
LV2_LOCK(0);
bool updateTrace = false;
bool updateWorkload = false;
bool terminate = false;
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
// Terminate request
if (spurs->m.sysSrvMsgTerminate & (1 << mgmt->spuNum)) {
spurs->m.sysSrvOnSpu &= ~(1 << mgmt->spuNum);
terminate = true;
}
// Update workload message
if (spurs->m.sysSrvMsgUpdateWorkload.read_relaxed() & (1 << mgmt->spuNum)) {
spurs->m.sysSrvMsgUpdateWorkload &= ~(1 << mgmt->spuNum);
updateWorkload = true;
}
// Update trace message
if (spurs->m.sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) {
updateTrace = true;
}
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
// Process update workload message
if (mgmt->spurs->m.sysSrvMsgUpdateWorkload.read_relaxed() & (1 << mgmt->spuNum)) {
mgmt->spurs->m.sysSrvMsgUpdateWorkload &= ~(1 << mgmt->spuNum);
if (updateWorkload) {
spursSysServiceUpdateWorkload(spu, mgmt);
}
// Process update trace message
if (mgmt->spurs->m.sysSrvMsgUpdateTrace & (1 << mgmt->spuNum)) {
if (updateTrace) {
spursSysServiceUpdateTrace(spu, mgmt, 1, 0, 0);
}
// Process terminate request
if (mgmt->spurs->m.sysSrvMsgTerminate & (1 << mgmt->spuNum)) {
mgmt->spurs->m.sysSrvOnSpu &= ~(1 << mgmt->spuNum);
if (terminate) {
// TODO: Rest of the terminate processing
}
}
/// Wait for an external event or exit the SPURS thread group if no workloads can be scheduled
void spursSysServiceWaitOrExit(SPUThread & spu, SpursKernelMgmtData * mgmt) {
// Monitor only lock line reservation lost events
spu.WriteChannel(SPU_WrEventMask, u128::from32r(SPU_EVENT_LR));
bool shouldExit;
while (true) {
Emu.GetCoreMutex().lock();
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100);
// Find the number of SPUs that are idling in this SPURS instance
u32 nIdlingSpus = 0;
for (u32 i = 0; i < 8; i++) {
if (mgmt->spurs->m.spuIdling & (1 << i)) {
if (spurs->m.spuIdling & (1 << i)) {
nIdlingSpus++;
}
}
bool allSpusIdle = nIdlingSpus == mgmt->spurs->m.nSpus ? true: false;
bool exitIfNoWork = mgmt->spurs->m.flags1 & SF1_EXIT_IF_NO_WORK ? true : false;
bool allSpusIdle = nIdlingSpus == spurs->m.nSpus ? true: false;
bool exitIfNoWork = spurs->m.flags1 & SF1_EXIT_IF_NO_WORK ? true : false;
shouldExit = allSpusIdle && exitIfNoWork;
// Check if any workloads can be scheduled
bool foundReadyWorkload = false;
if (mgmt->spurs->m.sysSrvMessage.read_relaxed() & (1 << mgmt->spuNum)) {
if (spurs->m.sysSrvMessage.read_relaxed() & (1 << mgmt->spuNum)) {
foundReadyWorkload = true;
} else {
if (mgmt->spurs->m.flags1 & SF1_32_WORKLOADS) {
if (spurs->m.flags1 & SF1_32_WORKLOADS) {
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD2; i++) {
u32 j = i & 0x0F;
u8 runnable = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->wklRunnable1 & (0x8000 >> j) : mgmt->wklRunnable2 & (0x8000 >> j);
u8 priority = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->priority[j] & 0x0F : mgmt->priority[j] >> 4;
u8 maxContention = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklMaxContention[j].read_relaxed() & 0x0F : mgmt->spurs->m.wklMaxContention[j].read_relaxed() >> 4;
u8 contention = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklCurrentContention[j] & 0x0F : mgmt->spurs->m.wklCurrentContention[j] >> 4;
u8 wklSignal = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> j) : mgmt->spurs->m.wklSignal2.read_relaxed() & (0x8000 >> j);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = i < CELL_SPURS_MAX_WORKLOAD ? mgmt->spurs->m.wklReadyCount1[j].read_relaxed() : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[j].read_relaxed();
u8 maxContention = i < CELL_SPURS_MAX_WORKLOAD ? spurs->m.wklMaxContention[j].read_relaxed() & 0x0F : spurs->m.wklMaxContention[j].read_relaxed() >> 4;
u8 contention = i < CELL_SPURS_MAX_WORKLOAD ? spurs->m.wklCurrentContention[j] & 0x0F : spurs->m.wklCurrentContention[j] >> 4;
u8 wklSignal = i < CELL_SPURS_MAX_WORKLOAD ? spurs->m.wklSignal1.read_relaxed() & (0x8000 >> j) : spurs->m.wklSignal2.read_relaxed() & (0x8000 >> j);
u8 wklFlag = spurs->m.wklFlag.flag.read_relaxed() == 0 ? spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = i < CELL_SPURS_MAX_WORKLOAD ? spurs->m.wklReadyCount1[j].read_relaxed() : spurs->m.wklIdleSpuCountOrReadyCount2[j].read_relaxed();
if (runnable && priority > 0 && maxContention > contention) {
if (wklFlag || wklSignal || readyCount > contention) {
@ -713,14 +805,14 @@ void spursSysServiceWaitOrExit(SPUThread & spu, SpursKernelMgmtData * mgmt) {
} else {
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
u8 runnable = mgmt->wklRunnable1 & (0x8000 >> i);
u8 wklSignal = mgmt->spurs->m.wklSignal1.read_relaxed() & (0x8000 >> i);
u8 wklFlag = mgmt->spurs->m.wklFlag.flag.read_relaxed() == 0 ? mgmt->spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = mgmt->spurs->m.wklReadyCount1[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklReadyCount1[i].read_relaxed();
u8 idleSpuCount = mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : mgmt->spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed();
u8 wklSignal = spurs->m.wklSignal1.read_relaxed() & (0x8000 >> i);
u8 wklFlag = spurs->m.wklFlag.flag.read_relaxed() == 0 ? spurs->m.wklFlagReceiver.read_relaxed() == i ? 1 : 0 : 0;
u8 readyCount = spurs->m.wklReadyCount1[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : spurs->m.wklReadyCount1[i].read_relaxed();
u8 idleSpuCount = spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed() > CELL_SPURS_MAX_SPU ? CELL_SPURS_MAX_SPU : spurs->m.wklIdleSpuCountOrReadyCount2[i].read_relaxed();
u8 requestCount = readyCount + idleSpuCount;
if (runnable && mgmt->priority[i] != 0 && mgmt->spurs->m.wklMaxContention[i].read_relaxed() > mgmt->spurs->m.wklCurrentContention[i]) {
if (wklFlag || wklSignal || (readyCount != 0 && requestCount > mgmt->spurs->m.wklCurrentContention[i])) {
if (runnable && mgmt->priority[i] != 0 && spurs->m.wklMaxContention[i].read_relaxed() > spurs->m.wklCurrentContention[i]) {
if (wklFlag || wklSignal || (readyCount != 0 && requestCount > spurs->m.wklCurrentContention[i])) {
foundReadyWorkload = true;
break;
}
@ -729,33 +821,29 @@ void spursSysServiceWaitOrExit(SPUThread & spu, SpursKernelMgmtData * mgmt) {
}
}
bool spuIdling = spurs->m.spuIdling & (1 << mgmt->spuNum) ? true : false;
if (foundReadyWorkload && shouldExit == false) {
spurs->m.spuIdling &= ~(1 << mgmt->spuNum);
} else {
spurs->m.spuIdling |= 1 << mgmt->spuNum;
}
// If all SPUs are idling and the exit_if_no_work flag is set then the SPU thread group must exit. Otherwise wait for external events.
if ((mgmt->spurs->m.spuIdling & (1 << mgmt->spuNum)) && (allSpusIdle == false || exitIfNoWork == false) && foundReadyWorkload == false) {
// The system service blocks by making a reservation and waiting on the reservation lost event. This is unfortunately
// not yet completely implemented in rpcs3. So we busy wait here.
//u128 r;
//spu.ReadChannel(r, 0);
Emu.GetCoreMutex().unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
Emu.GetCoreMutex().lock();
if (spuIdling && shouldExit == false && foundReadyWorkload == false) {
// The system service blocks by making a reservation and waiting on the lock line reservation lost event.
u128 r;
spu.ReadChannel(r, SPU_RdEventStat);
spu.WriteChannel(SPU_WrEventAck, u128::from32r(SPU_EVENT_LR));
}
if ((allSpusIdle == true && exitIfNoWork == true) || foundReadyWorkload == false) {
mgmt->spurs->m.spuIdling |= 1 << mgmt->spuNum;
} else {
mgmt->spurs->m.spuIdling &= ~(1 << mgmt->spuNum);
auto dmaSuccess = spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
if (dmaSuccess && (shouldExit || foundReadyWorkload)) {
break;
}
}
Emu.GetCoreMutex().unlock();
if (allSpusIdle == false || exitIfNoWork == false) {
if (foundReadyWorkload == true) {
return;
}
} else {
// TODO: exit spu thread group
}
if (shouldExit) {
// TODO: exit spu thread group
}
}
@ -764,22 +852,31 @@ void spursSysServiceWorkloadMain(SPUThread & spu, u32 pollStatus) {
auto mgmt = vm::get_ptr<SpursKernelMgmtData>(spu.ls_offset + 0x100);
if (mgmt->spurs.addr() % CellSpurs::align) {
assert(0);
spursHalt(spu);
return;
}
// Initialise the system service if this is the first time its being started on this SPU
if (mgmt->sysSrvInitialised == 0) {
mgmt->sysSrvInitialised = 1;
LV2_LOCK(0);
if (mgmt->spurs->m.sysSrvOnSpu & (1 << mgmt->spuNum)) {
assert(0);
}
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr(), 0x100/*LSA*/, 0x80/*size*/, 0/*tag*/);
mgmt->spurs->m.sysSrvOnSpu |= 1 << mgmt->spuNum;
mgmt->traceBuffer = 0;
mgmt->traceMsgCount = -1;
do {
spursDma(spu, MFC_GETLLAR_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/);
CellSpurs * spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
// Halt if already initialised
if (spurs->m.sysSrvOnSpu & (1 << mgmt->spuNum)) {
spursHalt(spu);
return;
}
spurs->m.sysSrvOnSpu |= 1 << mgmt->spuNum;
} while (spursDma(spu, MFC_PUTLLC_CMD, mgmt->spurs.addr() + offsetof(CellSpurs, m.wklState1), 0x2D80/*LSA*/, 0x80/*size*/, 0/*tag*/) == false);
mgmt->traceBuffer = 0;
mgmt->traceMsgCount = -1;
spursSysServiceUpdateTrace(spu, mgmt, 1, 1, 0);
spursSysServiceCleanupAfterPreemption(spu, mgmt);
@ -818,6 +915,8 @@ poll:
pkt.header.tag = CELL_SPURS_TRACE_TAG_STOP;
pkt.data.stop = SPURS_GUID_SYS_WKL;
cellSpursModulePutTrace(&pkt, mgmt->dmaTagId);
spursDmaWaitForCompletion(spu, 1 << mgmt->dmaTagId);
break;
}
@ -849,10 +948,6 @@ bool spursSysServiceWorkloadEntry(SPUThread & spu) {
auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3];
spu.GPR[1]._u32[3] = 0x3FFD0;
*(vm::ptr<u32>::make(spu.GPR[1]._u32[3])) = 0x3FFF0;
memset(vm::get_ptr<void>(spu.ls_offset + 0x3FFE0), 0, 32);
if (mgmt->wklCurrentId == CELL_SPURS_SYS_SERVICE_WORKLOAD_ID) {
spursSysServiceWorkloadMain(spu, pollStatus);
} else {
@ -860,7 +955,6 @@ bool spursSysServiceWorkloadEntry(SPUThread & spu) {
// system service workload. Need to implement this.
}
// TODO: Ensure that this function always returns to the SPURS kernel
return false;
}