quantum-space-buddies/Mirror/Runtime/SyncList.cs
2021-12-27 22:31:23 -08:00

407 lines
12 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
namespace Mirror
{
public class SyncList<T> : SyncObject, IList<T>, IReadOnlyList<T>
{
public delegate void SyncListChanged(Operation op, int itemIndex, T oldItem, T newItem);
readonly IList<T> objects;
readonly IEqualityComparer<T> comparer;
public int Count => objects.Count;
public bool IsReadOnly { get; private set; }
public event SyncListChanged Callback;
public enum Operation : byte
{
OP_ADD,
OP_CLEAR,
OP_INSERT,
OP_REMOVEAT,
OP_SET
}
struct Change
{
internal Operation operation;
internal int index;
internal T item;
}
// list of changes.
// -> insert/delete/clear is only ONE change
// -> changing the same slot 10x caues 10 changes.
// -> note that this grows until next sync(!)
readonly List<Change> changes = new List<Change>();
// how many changes we need to ignore
// this is needed because when we initialize the list,
// we might later receive changes that have already been applied
// so we need to skip them
int changesAhead;
public SyncList() : this(EqualityComparer<T>.Default) {}
public SyncList(IEqualityComparer<T> comparer)
{
this.comparer = comparer ?? EqualityComparer<T>.Default;
objects = new List<T>();
}
public SyncList(IList<T> objects, IEqualityComparer<T> comparer = null)
{
this.comparer = comparer ?? EqualityComparer<T>.Default;
this.objects = objects;
}
// throw away all the changes
// this should be called after a successful sync
public override void ClearChanges() => changes.Clear();
public override void Reset()
{
IsReadOnly = false;
changes.Clear();
changesAhead = 0;
objects.Clear();
}
void AddOperation(Operation op, int itemIndex, T oldItem, T newItem)
{
if (IsReadOnly)
{
throw new InvalidOperationException("Synclists can only be modified at the server");
}
Change change = new Change
{
operation = op,
index = itemIndex,
item = newItem
};
if (IsRecording())
{
changes.Add(change);
OnDirty?.Invoke();
}
Callback?.Invoke(op, itemIndex, oldItem, newItem);
}
public override void OnSerializeAll(NetworkWriter writer)
{
// if init, write the full list content
writer.WriteUInt((uint)objects.Count);
for (int i = 0; i < objects.Count; i++)
{
T obj = objects[i];
writer.Write(obj);
}
// all changes have been applied already
// thus the client will need to skip all the pending changes
// or they would be applied again.
// So we write how many changes are pending
writer.WriteUInt((uint)changes.Count);
}
public override void OnSerializeDelta(NetworkWriter writer)
{
// write all the queued up changes
writer.WriteUInt((uint)changes.Count);
for (int i = 0; i < changes.Count; i++)
{
Change change = changes[i];
writer.WriteByte((byte)change.operation);
switch (change.operation)
{
case Operation.OP_ADD:
writer.Write(change.item);
break;
case Operation.OP_CLEAR:
break;
case Operation.OP_REMOVEAT:
writer.WriteUInt((uint)change.index);
break;
case Operation.OP_INSERT:
case Operation.OP_SET:
writer.WriteUInt((uint)change.index);
writer.Write(change.item);
break;
}
}
}
public override void OnDeserializeAll(NetworkReader reader)
{
// This list can now only be modified by synchronization
IsReadOnly = true;
// if init, write the full list content
int count = (int)reader.ReadUInt();
objects.Clear();
changes.Clear();
for (int i = 0; i < count; i++)
{
T obj = reader.Read<T>();
objects.Add(obj);
}
// We will need to skip all these changes
// the next time the list is synchronized
// because they have already been applied
changesAhead = (int)reader.ReadUInt();
}
public override void OnDeserializeDelta(NetworkReader reader)
{
// This list can now only be modified by synchronization
IsReadOnly = true;
int changesCount = (int)reader.ReadUInt();
for (int i = 0; i < changesCount; i++)
{
Operation operation = (Operation)reader.ReadByte();
// apply the operation only if it is a new change
// that we have not applied yet
bool apply = changesAhead == 0;
int index = 0;
T oldItem = default;
T newItem = default;
switch (operation)
{
case Operation.OP_ADD:
newItem = reader.Read<T>();
if (apply)
{
index = objects.Count;
objects.Add(newItem);
}
break;
case Operation.OP_CLEAR:
if (apply)
{
objects.Clear();
}
break;
case Operation.OP_INSERT:
index = (int)reader.ReadUInt();
newItem = reader.Read<T>();
if (apply)
{
objects.Insert(index, newItem);
}
break;
case Operation.OP_REMOVEAT:
index = (int)reader.ReadUInt();
if (apply)
{
oldItem = objects[index];
objects.RemoveAt(index);
}
break;
case Operation.OP_SET:
index = (int)reader.ReadUInt();
newItem = reader.Read<T>();
if (apply)
{
oldItem = objects[index];
objects[index] = newItem;
}
break;
}
if (apply)
{
Callback?.Invoke(operation, index, oldItem, newItem);
}
// we just skipped this change
else
{
changesAhead--;
}
}
}
public void Add(T item)
{
objects.Add(item);
AddOperation(Operation.OP_ADD, objects.Count - 1, default, item);
}
public void AddRange(IEnumerable<T> range)
{
foreach (T entry in range)
{
Add(entry);
}
}
public void Clear()
{
objects.Clear();
AddOperation(Operation.OP_CLEAR, 0, default, default);
}
public bool Contains(T item) => IndexOf(item) >= 0;
public void CopyTo(T[] array, int index) => objects.CopyTo(array, index);
public int IndexOf(T item)
{
for (int i = 0; i < objects.Count; ++i)
if (comparer.Equals(item, objects[i]))
return i;
return -1;
}
public int FindIndex(Predicate<T> match)
{
for (int i = 0; i < objects.Count; ++i)
if (match(objects[i]))
return i;
return -1;
}
public T Find(Predicate<T> match)
{
int i = FindIndex(match);
return (i != -1) ? objects[i] : default;
}
public List<T> FindAll(Predicate<T> match)
{
List<T> results = new List<T>();
for (int i = 0; i < objects.Count; ++i)
if (match(objects[i]))
results.Add(objects[i]);
return results;
}
public void Insert(int index, T item)
{
objects.Insert(index, item);
AddOperation(Operation.OP_INSERT, index, default, item);
}
public void InsertRange(int index, IEnumerable<T> range)
{
foreach (T entry in range)
{
Insert(index, entry);
index++;
}
}
public bool Remove(T item)
{
int index = IndexOf(item);
bool result = index >= 0;
if (result)
{
RemoveAt(index);
}
return result;
}
public void RemoveAt(int index)
{
T oldItem = objects[index];
objects.RemoveAt(index);
AddOperation(Operation.OP_REMOVEAT, index, oldItem, default);
}
public int RemoveAll(Predicate<T> match)
{
List<T> toRemove = new List<T>();
for (int i = 0; i < objects.Count; ++i)
if (match(objects[i]))
toRemove.Add(objects[i]);
foreach (T entry in toRemove)
{
Remove(entry);
}
return toRemove.Count;
}
public T this[int i]
{
get => objects[i];
set
{
if (!comparer.Equals(objects[i], value))
{
T oldItem = objects[i];
objects[i] = value;
AddOperation(Operation.OP_SET, i, oldItem, value);
}
}
}
public Enumerator GetEnumerator() => new Enumerator(this);
IEnumerator<T> IEnumerable<T>.GetEnumerator() => new Enumerator(this);
IEnumerator IEnumerable.GetEnumerator() => new Enumerator(this);
// default Enumerator allocates. we need a custom struct Enumerator to
// not allocate on the heap.
// (System.Collections.Generic.List<T> source code does the same)
//
// benchmark:
// uMMORPG with 800 monsters, Skills.GetHealthBonus() which runs a
// foreach on skills SyncList:
// before: 81.2KB GC per frame
// after: 0KB GC per frame
// => this is extremely important for MMO scale networking
public struct Enumerator : IEnumerator<T>
{
readonly SyncList<T> list;
int index;
public T Current { get; private set; }
public Enumerator(SyncList<T> list)
{
this.list = list;
index = -1;
Current = default;
}
public bool MoveNext()
{
if (++index >= list.Count)
{
return false;
}
Current = list[index];
return true;
}
public void Reset() => index = -1;
object IEnumerator.Current => Current;
public void Dispose() {}
}
}
}