// Quaternion compression from DOTSNET using System; using UnityEngine; namespace Mirror { /// Functions to Compress Quaternions and Floats public static class Compression { // quaternion compression ////////////////////////////////////////////// // smallest three: https://gafferongames.com/post/snapshot_compression/ // compresses 16 bytes quaternion into 4 bytes // helper function to find largest absolute element // returns the index of the largest one public static int LargestAbsoluteComponentIndex(Vector4 value, out float largestAbs, out Vector3 withoutLargest) { // convert to abs Vector4 abs = new Vector4(Mathf.Abs(value.x), Mathf.Abs(value.y), Mathf.Abs(value.z), Mathf.Abs(value.w)); // set largest to first abs (x) largestAbs = abs.x; withoutLargest = new Vector3(value.y, value.z, value.w); int largestIndex = 0; // compare to the others, starting at second value // performance for 100k calls // for-loop: 25ms // manual checks: 22ms if (abs.y > largestAbs) { largestIndex = 1; largestAbs = abs.y; withoutLargest = new Vector3(value.x, value.z, value.w); } if (abs.z > largestAbs) { largestIndex = 2; largestAbs = abs.z; withoutLargest = new Vector3(value.x, value.y, value.w); } if (abs.w > largestAbs) { largestIndex = 3; largestAbs = abs.w; withoutLargest = new Vector3(value.x, value.y, value.z); } return largestIndex; } // scale a float within min/max range to an ushort between min/max range // note: can also use this for byte range from byte.MinValue to byte.MaxValue public static ushort ScaleFloatToUShort(float value, float minValue, float maxValue, ushort minTarget, ushort maxTarget) { // note: C# ushort - ushort => int, hence so many casts // max ushort - min ushort only fits into something bigger int targetRange = maxTarget - minTarget; float valueRange = maxValue - minValue; float valueRelative = value - minValue; return (ushort)(minTarget + (ushort)(valueRelative / valueRange * targetRange)); } // scale an ushort within min/max range to a float between min/max range // note: can also use this for byte range from byte.MinValue to byte.MaxValue public static float ScaleUShortToFloat(ushort value, ushort minValue, ushort maxValue, float minTarget, float maxTarget) { // note: C# ushort - ushort => int, hence so many casts float targetRange = maxTarget - minTarget; ushort valueRange = (ushort)(maxValue - minValue); ushort valueRelative = (ushort)(value - minValue); return minTarget + (valueRelative / (float)valueRange * targetRange); } const float QuaternionMinRange = -0.707107f; const float QuaternionMaxRange = 0.707107f; const ushort TenBitsMax = 0x3FF; // helper function to access 'nth' component of quaternion static float QuaternionElement(Quaternion q, int element) { switch (element) { case 0: return q.x; case 1: return q.y; case 2: return q.z; case 3: return q.w; default: return 0; } } // note: assumes normalized quaternions public static uint CompressQuaternion(Quaternion q) { // note: assuming normalized quaternions is enough. no need to force // normalize here. we already normalize when decompressing. // find the largest component index [0,3] + value int largestIndex = LargestAbsoluteComponentIndex(new Vector4(q.x, q.y, q.z, q.w), out float _, out Vector3 withoutLargest); // from here on, we work with the 3 components without largest! // "You might think you need to send a sign bit for [largest] in // case it is negative, but you don’t, because you can make // [largest] always positive by negating the entire quaternion if // [largest] is negative. in quaternion space (x,y,z,w) and // (-x,-y,-z,-w) represent the same rotation." if (QuaternionElement(q, largestIndex) < 0) withoutLargest = -withoutLargest; // put index & three floats into one integer. // => index is 2 bits (4 values require 2 bits to store them) // => the three floats are between [-0.707107,+0.707107] because: // "If v is the absolute value of the largest quaternion // component, the next largest possible component value occurs // when two components have the same absolute value and the // other two components are zero. The length of that quaternion // (v,v,0,0) is 1, therefore v^2 + v^2 = 1, 2v^2 = 1, // v = 1/sqrt(2). This means you can encode the smallest three // components in [-0.707107,+0.707107] instead of [-1,+1] giving // you more precision with the same number of bits." // => the article recommends storing each float in 9 bits // => our uint has 32 bits, so we might as well store in (32-2)/3=10 // 10 bits max value: 1023=0x3FF (use OSX calc to flip 10 bits) ushort aScaled = ScaleFloatToUShort(withoutLargest.x, QuaternionMinRange, QuaternionMaxRange, 0, TenBitsMax); ushort bScaled = ScaleFloatToUShort(withoutLargest.y, QuaternionMinRange, QuaternionMaxRange, 0, TenBitsMax); ushort cScaled = ScaleFloatToUShort(withoutLargest.z, QuaternionMinRange, QuaternionMaxRange, 0, TenBitsMax); // now we just need to pack them into one integer // -> index is 2 bit and needs to be shifted to 31..32 // -> a is 10 bit and needs to be shifted 20..30 // -> b is 10 bit and needs to be shifted 10..20 // -> c is 10 bit and needs to be at 0..10 return (uint)(largestIndex << 30 | aScaled << 20 | bScaled << 10 | cScaled); } // Quaternion normalizeSAFE from ECS math.normalizesafe() // => useful to produce valid quaternions even if client sends invalid // data static Quaternion QuaternionNormalizeSafe(Quaternion value) { // The smallest positive normal number representable in a float. const float FLT_MIN_NORMAL = 1.175494351e-38F; Vector4 v = new Vector4(value.x, value.y, value.z, value.w); float length = Vector4.Dot(v, v); return length > FLT_MIN_NORMAL ? value.normalized : Quaternion.identity; } // note: gives normalized quaternions public static Quaternion DecompressQuaternion(uint data) { // get cScaled which is at 0..10 and ignore the rest ushort cScaled = (ushort)(data & TenBitsMax); // get bScaled which is at 10..20 and ignore the rest ushort bScaled = (ushort)((data >> 10) & TenBitsMax); // get aScaled which is at 20..30 and ignore the rest ushort aScaled = (ushort)((data >> 20) & TenBitsMax); // get 2 bit largest index, which is at 31..32 int largestIndex = (int)(data >> 30); // scale back to floats float a = ScaleUShortToFloat(aScaled, 0, TenBitsMax, QuaternionMinRange, QuaternionMaxRange); float b = ScaleUShortToFloat(bScaled, 0, TenBitsMax, QuaternionMinRange, QuaternionMaxRange); float c = ScaleUShortToFloat(cScaled, 0, TenBitsMax, QuaternionMinRange, QuaternionMaxRange); // calculate the omitted component based on a²+b²+c²+d²=1 float d = Mathf.Sqrt(1 - a*a - b*b - c*c); // reconstruct based on largest index Vector4 value; switch (largestIndex) { case 0: value = new Vector4(d, a, b, c); break; case 1: value = new Vector4(a, d, b, c); break; case 2: value = new Vector4(a, b, d, c); break; default: value = new Vector4(a, b, c, d); break; } // ECS Rotation only works with normalized quaternions. // make sure that's always the case here to avoid ECS bugs where // everything stops moving if the quaternion isn't normalized. // => NormalizeSafe returns a normalized quaternion even if we pass // in NaN from deserializing invalid values! return QuaternionNormalizeSafe(new Quaternion(value.x, value.y, value.z, value.w)); } // varint compression ////////////////////////////////////////////////// // compress ulong varint. // same result for int, short and byte. only need one function. // NOT an extension. otherwise weaver might accidentally use it. public static void CompressVarUInt(NetworkWriter writer, ulong value) { if (value <= 240) { writer.Write((byte)value); return; } if (value <= 2287) { writer.Write((byte)(((value - 240) >> 8) + 241)); writer.Write((byte)((value - 240) & 0xFF)); return; } if (value <= 67823) { writer.Write((byte)249); writer.Write((byte)((value - 2288) >> 8)); writer.Write((byte)((value - 2288) & 0xFF)); return; } if (value <= 16777215) { writer.Write((byte)250); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); return; } if (value <= 4294967295) { writer.Write((byte)251); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); writer.Write((byte)((value >> 24) & 0xFF)); return; } if (value <= 1099511627775) { writer.Write((byte)252); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); writer.Write((byte)((value >> 24) & 0xFF)); writer.Write((byte)((value >> 32) & 0xFF)); return; } if (value <= 281474976710655) { writer.Write((byte)253); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); writer.Write((byte)((value >> 24) & 0xFF)); writer.Write((byte)((value >> 32) & 0xFF)); writer.Write((byte)((value >> 40) & 0xFF)); return; } if (value <= 72057594037927935) { writer.Write((byte)254); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); writer.Write((byte)((value >> 24) & 0xFF)); writer.Write((byte)((value >> 32) & 0xFF)); writer.Write((byte)((value >> 40) & 0xFF)); writer.Write((byte)((value >> 48) & 0xFF)); return; } // all others { writer.Write((byte)255); writer.Write((byte)(value & 0xFF)); writer.Write((byte)((value >> 8) & 0xFF)); writer.Write((byte)((value >> 16) & 0xFF)); writer.Write((byte)((value >> 24) & 0xFF)); writer.Write((byte)((value >> 32) & 0xFF)); writer.Write((byte)((value >> 40) & 0xFF)); writer.Write((byte)((value >> 48) & 0xFF)); writer.Write((byte)((value >> 56) & 0xFF)); } } // zigzag encoding https://gist.github.com/mfuerstenau/ba870a29e16536fdbaba public static void CompressVarInt(NetworkWriter writer, long i) { ulong zigzagged = (ulong)((i >> 63) ^ (i << 1)); CompressVarUInt(writer, zigzagged); } // NOT an extension. otherwise weaver might accidentally use it. public static ulong DecompressVarUInt(NetworkReader reader) { byte a0 = reader.ReadByte(); if (a0 < 241) { return a0; } byte a1 = reader.ReadByte(); if (a0 >= 241 && a0 <= 248) { return 240 + ((a0 - (ulong)241) << 8) + a1; } byte a2 = reader.ReadByte(); if (a0 == 249) { return 2288 + ((ulong)a1 << 8) + a2; } byte a3 = reader.ReadByte(); if (a0 == 250) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16); } byte a4 = reader.ReadByte(); if (a0 == 251) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16) + (((ulong)a4) << 24); } byte a5 = reader.ReadByte(); if (a0 == 252) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16) + (((ulong)a4) << 24) + (((ulong)a5) << 32); } byte a6 = reader.ReadByte(); if (a0 == 253) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16) + (((ulong)a4) << 24) + (((ulong)a5) << 32) + (((ulong)a6) << 40); } byte a7 = reader.ReadByte(); if (a0 == 254) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16) + (((ulong)a4) << 24) + (((ulong)a5) << 32) + (((ulong)a6) << 40) + (((ulong)a7) << 48); } byte a8 = reader.ReadByte(); if (a0 == 255) { return a1 + (((ulong)a2) << 8) + (((ulong)a3) << 16) + (((ulong)a4) << 24) + (((ulong)a5) << 32) + (((ulong)a6) << 40) + (((ulong)a7) << 48) + (((ulong)a8) << 56); } throw new IndexOutOfRangeException($"DecompressVarInt failure: {a0}"); } // zigzag decoding https://gist.github.com/mfuerstenau/ba870a29e16536fdbaba public static long DecompressVarInt(NetworkReader reader) { ulong data = DecompressVarUInt(reader); return ((long)(data >> 1)) ^ -((long)data & 1); } } }