protobuf-go/internal/impl/message.go
Joe Tsai 6f9095c675 internal/value: expose Converter.{MessageType,EnumType}
Rather than having the Converter carry a NewMessage method, have the struct
simply expose the MessageType or EnumType since they carry more information
and are retrieved anyways as part of the functionality of NewConverter.
While changing Converter, export the fields and remove all the methods.
Also, add an IsLegacy boolean, which is useful for the later implementation
of the extension fields.

Add a wrapLegacyEnum function which is used to wrap v1 enums as v2 enums.
We use this functionality in NewLegacyConverter to detrive the EnumType.
Additionally, modify wrapLegacyMessage to return a protoreflect.ProtoMessage
to be consistent with wrapLegacyEnum which must return a protoreflect.ProtoEnum.

Change-Id: Idc8989d07e4895d30de4ebc22c9ffa7357815cad
Reviewed-on: https://go-review.googlesource.com/c/148827
Reviewed-by: Herbie Ong <herbie@google.com>
2018-11-12 22:59:43 +00:00

311 lines
11 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"strconv"
"strings"
"sync"
pref "github.com/golang/protobuf/v2/reflect/protoreflect"
ptype "github.com/golang/protobuf/v2/reflect/prototype"
)
// MessageType provides protobuf related functionality for a given Go type
// that represents a message. A given instance of MessageType is tied to
// exactly one Go type, which must be a pointer to a struct type.
type MessageType struct {
// Desc is an optionally provided message descriptor. If nil, the descriptor
// is lazily derived from the Go type information of generated messages
// for the v1 API.
//
// Once set, this field must never be mutated.
Desc pref.MessageDescriptor
once sync.Once // protects all unexported fields
goType reflect.Type // pointer to struct
pbType pref.MessageType // only valid if goType does not implement proto.Message
// TODO: Split fields into dense and sparse maps similar to the current
// table-driven implementation in v1?
fields map[pref.FieldNumber]*fieldInfo
unknownFields func(*messageDataType) pref.UnknownFields
extensionFields func(*messageDataType) pref.KnownFields
}
// init lazily initializes the MessageType upon first use and
// also checks that the provided pointer p is of the correct Go type.
//
// It must be called at the start of every exported method.
func (mi *MessageType) init(p interface{}) {
mi.once.Do(func() {
v := reflect.ValueOf(p)
t := v.Type()
if t.Kind() != reflect.Ptr && t.Elem().Kind() != reflect.Struct {
panic(fmt.Sprintf("got %v, want *struct kind", t))
}
mi.goType = t
// Derive the message descriptor if unspecified.
if mi.Desc == nil {
mi.Desc = loadMessageDesc(t)
}
// Initialize the Go message type wrapper if the Go type does not
// implement the proto.Message interface.
//
// Otherwise, we assume that the Go type manually implements the
// interface and is internally consistent such that:
// goType == reflect.New(goType.Elem()).Interface().(proto.Message).ProtoReflect().Type().GoType()
//
// Generated code ensures that this property holds.
if _, ok := p.(pref.ProtoMessage); !ok {
mi.pbType = ptype.GoMessage(mi.Desc, func(pref.MessageType) pref.ProtoMessage {
p := reflect.New(t.Elem()).Interface()
return (*legacyMessageWrapper)(mi.dataTypeOf(p))
})
}
mi.makeKnownFieldsFunc(t.Elem())
mi.makeUnknownFieldsFunc(t.Elem())
mi.makeExtensionFieldsFunc(t.Elem())
})
// TODO: Remove this check? This API is primarily used by generated code,
// and should not violate this assumption. Leave this check in for now to
// provide some sanity checks during development. This can be removed if
// it proves to be detrimental to performance.
if reflect.TypeOf(p) != mi.goType {
panic(fmt.Sprintf("type mismatch: got %T, want %v", p, mi.goType))
}
}
// makeKnownFieldsFunc generates per-field functions for all operations
// to be performed on each field. It takes in a reflect.Type representing the
// Go struct, and a protoreflect.MessageDescriptor to match with the fields
// in the struct.
//
// This code assumes that the struct is well-formed and panics if there are
// any discrepancies.
func (mi *MessageType) makeKnownFieldsFunc(t reflect.Type) {
// Generate a mapping of field numbers and names to Go struct field or type.
fields := map[pref.FieldNumber]reflect.StructField{}
oneofs := map[pref.Name]reflect.StructField{}
oneofFields := map[pref.FieldNumber]reflect.Type{}
special := map[string]reflect.StructField{}
fieldLoop:
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
fields[pref.FieldNumber(n)] = f
continue fieldLoop
}
}
if s := f.Tag.Get("protobuf_oneof"); len(s) > 0 {
oneofs[pref.Name(s)] = f
continue fieldLoop
}
switch f.Name {
case "XXX_weak", "XXX_unrecognized", "XXX_sizecache", "XXX_extensions", "XXX_InternalExtensions":
special[f.Name] = f
continue fieldLoop
}
}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofFuncs"); ok {
vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3]
oneofLoop:
for _, v := range vs.Interface().([]interface{}) {
tf := reflect.TypeOf(v).Elem()
f := tf.Field(0)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
oneofFields[pref.FieldNumber(n)] = tf
continue oneofLoop
}
}
}
}
mi.fields = map[pref.FieldNumber]*fieldInfo{}
for i := 0; i < mi.Desc.Fields().Len(); i++ {
fd := mi.Desc.Fields().Get(i)
fs := fields[fd.Number()]
var fi fieldInfo
switch {
case fd.IsWeak():
fi = fieldInfoForWeak(fd, special["XXX_weak"])
case fd.OneofType() != nil:
fi = fieldInfoForOneof(fd, oneofs[fd.OneofType().Name()], oneofFields[fd.Number()])
case fd.IsMap():
fi = fieldInfoForMap(fd, fs)
case fd.Cardinality() == pref.Repeated:
fi = fieldInfoForVector(fd, fs)
case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind:
fi = fieldInfoForMessage(fd, fs)
default:
fi = fieldInfoForScalar(fd, fs)
}
mi.fields[fd.Number()] = &fi
}
}
func (mi *MessageType) makeUnknownFieldsFunc(t reflect.Type) {
if f := makeLegacyUnknownFieldsFunc(t); f != nil {
mi.unknownFields = f
return
}
mi.unknownFields = func(*messageDataType) pref.UnknownFields {
return emptyUnknownFields{}
}
}
func (mi *MessageType) makeExtensionFieldsFunc(t reflect.Type) {
// TODO
mi.extensionFields = func(*messageDataType) pref.KnownFields {
return emptyExtensionFields{}
}
}
func (mi *MessageType) MessageOf(p interface{}) pref.Message {
mi.init(p)
if m, ok := p.(pref.ProtoMessage); ok {
// We assume p properly implements protoreflect.Message.
// See the comment in MessageType.init regarding pbType.
return m.ProtoReflect()
}
return (*legacyMessageWrapper)(mi.dataTypeOf(p))
}
func (mi *MessageType) KnownFieldsOf(p interface{}) pref.KnownFields {
mi.init(p)
return (*knownFields)(mi.dataTypeOf(p))
}
func (mi *MessageType) UnknownFieldsOf(p interface{}) pref.UnknownFields {
mi.init(p)
return mi.unknownFields(mi.dataTypeOf(p))
}
func (mi *MessageType) dataTypeOf(p interface{}) *messageDataType {
return &messageDataType{pointerOfIface(&p), mi}
}
// messageDataType is a tuple of a pointer to the message data and
// a pointer to the message type.
//
// TODO: Unfortunately, we need to close over a pointer and MessageType,
// which incurs an an allocation. This pair is similar to a Go interface,
// which is essentially a tuple of the same thing. We can make this efficient
// with reflect.NamedOf (see https://golang.org/issues/16522).
//
// With that hypothetical API, we could dynamically create a new named type
// that has the same underlying type as MessageType.goType, and
// dynamically create methods that close over MessageType.
// Since the new type would have the same underlying type, we could directly
// convert between pointers of those types, giving us an efficient way to swap
// out the method set.
//
// Barring the ability to dynamically create named types, the workaround is
// 1. either to accept the cost of an allocation for this wrapper struct or
// 2. generate more types and methods, at the expense of binary size increase.
type messageDataType struct {
p pointer
mi *MessageType
}
type knownFields messageDataType
func (fs *knownFields) Len() (cnt int) {
for _, fi := range fs.mi.fields {
if fi.has(fs.p) {
cnt++
}
}
return cnt + fs.extensionFields().Len()
}
func (fs *knownFields) Has(n pref.FieldNumber) bool {
if fi := fs.mi.fields[n]; fi != nil {
return fi.has(fs.p)
}
return fs.extensionFields().Has(n)
}
func (fs *knownFields) Get(n pref.FieldNumber) pref.Value {
if fi := fs.mi.fields[n]; fi != nil {
return fi.get(fs.p)
}
return fs.extensionFields().Get(n)
}
func (fs *knownFields) Set(n pref.FieldNumber, v pref.Value) {
if fi := fs.mi.fields[n]; fi != nil {
fi.set(fs.p, v)
return
}
fs.extensionFields().Set(n, v)
}
func (fs *knownFields) Clear(n pref.FieldNumber) {
if fi := fs.mi.fields[n]; fi != nil {
fi.clear(fs.p)
return
}
fs.extensionFields().Clear(n)
}
func (fs *knownFields) Mutable(n pref.FieldNumber) pref.Mutable {
if fi := fs.mi.fields[n]; fi != nil {
return fi.mutable(fs.p)
}
return fs.extensionFields().Mutable(n)
}
func (fs *knownFields) Range(f func(pref.FieldNumber, pref.Value) bool) {
for n, fi := range fs.mi.fields {
if fi.has(fs.p) {
if !f(n, fi.get(fs.p)) {
return
}
}
}
fs.extensionFields().Range(f)
}
func (fs *knownFields) ExtensionTypes() pref.ExtensionFieldTypes {
return fs.extensionFields().ExtensionTypes()
}
func (fs *knownFields) extensionFields() pref.KnownFields {
return fs.mi.extensionFields((*messageDataType)(fs))
}
type emptyUnknownFields struct{}
func (emptyUnknownFields) Len() int { return 0 }
func (emptyUnknownFields) Get(pref.FieldNumber) pref.RawFields { return nil }
func (emptyUnknownFields) Set(pref.FieldNumber, pref.RawFields) { return } // noop
func (emptyUnknownFields) Range(func(pref.FieldNumber, pref.RawFields) bool) { return }
func (emptyUnknownFields) IsSupported() bool { return false }
type emptyExtensionFields struct{}
func (emptyExtensionFields) Len() int { return 0 }
func (emptyExtensionFields) Has(pref.FieldNumber) bool { return false }
func (emptyExtensionFields) Get(pref.FieldNumber) pref.Value { return pref.Value{} }
func (emptyExtensionFields) Set(pref.FieldNumber, pref.Value) { panic("extensions not supported") }
func (emptyExtensionFields) Clear(pref.FieldNumber) { return } // noop
func (emptyExtensionFields) Mutable(pref.FieldNumber) pref.Mutable { panic("extensions not supported") }
func (emptyExtensionFields) Range(f func(pref.FieldNumber, pref.Value) bool) { return }
func (emptyExtensionFields) ExtensionTypes() pref.ExtensionFieldTypes { return emptyExtensionTypes{} }
type emptyExtensionTypes struct{}
func (emptyExtensionTypes) Len() int { return 0 }
func (emptyExtensionTypes) Register(pref.ExtensionType) { panic("extensions not supported") }
func (emptyExtensionTypes) Remove(pref.ExtensionType) { return } // noop
func (emptyExtensionTypes) ByNumber(pref.FieldNumber) pref.ExtensionType { return nil }
func (emptyExtensionTypes) ByName(pref.FullName) pref.ExtensionType { return nil }
func (emptyExtensionTypes) Range(func(pref.ExtensionType) bool) { return }