mirror of
https://github.com/protocolbuffers/protobuf-go.git
synced 2025-01-30 21:32:43 +00:00
d30e561d9e
Add functions to the proto package which plumb through the fast-path state. As a sample use case: A followup CL adds an Initialized field to protoiface.UnmarshalOutput, permitting the unmarshaller to report back when it can confirm that a message is fully initialized. We want to preserve that information when an unmarshal operation threads through the proto package (such as when unmarshaling extensions). To allow these functions to be added as methods of MarshalOptions and UnmarshalOptions rather than top-level functions, separate the options from the input structs. Also update options passed to fast-path methods to set AllowPartial and Merge to reflect the expected behavior of those methods. (Always allow partial, never merge.) Change-Id: I482477b0c9340793be533e75a86d0bb88708716a Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/215877 Reviewed-by: Joe Tsai <joetsai@google.com>
484 lines
16 KiB
Go
484 lines
16 KiB
Go
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package impl
|
|
|
|
import (
|
|
"fmt"
|
|
"reflect"
|
|
"strings"
|
|
"sync"
|
|
|
|
"google.golang.org/protobuf/internal/descopts"
|
|
ptag "google.golang.org/protobuf/internal/encoding/tag"
|
|
"google.golang.org/protobuf/internal/errors"
|
|
"google.golang.org/protobuf/internal/filedesc"
|
|
"google.golang.org/protobuf/internal/strs"
|
|
"google.golang.org/protobuf/reflect/protoreflect"
|
|
pref "google.golang.org/protobuf/reflect/protoreflect"
|
|
piface "google.golang.org/protobuf/runtime/protoiface"
|
|
)
|
|
|
|
// legacyWrapMessage wraps v as a protoreflect.ProtoMessage,
|
|
// where v must be a *struct kind and not implement the v2 API already.
|
|
func legacyWrapMessage(v reflect.Value) pref.ProtoMessage {
|
|
typ := v.Type()
|
|
if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
|
|
return aberrantMessage{v: v}
|
|
}
|
|
mt := legacyLoadMessageInfo(typ, "")
|
|
return mt.MessageOf(v.Interface()).Interface()
|
|
}
|
|
|
|
var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
|
|
|
|
// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
|
|
// where t must be a *struct kind and not implement the v2 API already.
|
|
// The provided name is used if it cannot be determined from the message.
|
|
func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
|
|
// Fast-path: check if a MessageInfo is cached for this concrete type.
|
|
if mt, ok := legacyMessageTypeCache.Load(t); ok {
|
|
return mt.(*MessageInfo)
|
|
}
|
|
|
|
// Slow-path: derive message descriptor and initialize MessageInfo.
|
|
mi := &MessageInfo{
|
|
Desc: legacyLoadMessageDesc(t, name),
|
|
GoReflectType: t,
|
|
}
|
|
|
|
v := reflect.Zero(t).Interface()
|
|
if _, ok := v.(legacyMarshaler); ok {
|
|
mi.methods.Marshal = legacyMarshal
|
|
|
|
// We have no way to tell whether the type's Marshal method
|
|
// supports deterministic serialization or not, but this
|
|
// preserves the v1 implementation's behavior of always
|
|
// calling Marshal methods when present.
|
|
mi.methods.Flags |= piface.SupportMarshalDeterministic
|
|
}
|
|
if _, ok := v.(legacyUnmarshaler); ok {
|
|
mi.methods.Unmarshal = legacyUnmarshal
|
|
}
|
|
|
|
if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
|
|
return mi.(*MessageInfo)
|
|
}
|
|
return mi
|
|
}
|
|
|
|
var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
|
|
|
|
// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
|
|
// which must be a *struct kind and not implement the v2 API already.
|
|
//
|
|
// This is exported for testing purposes.
|
|
func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
|
|
return legacyLoadMessageDesc(t, "")
|
|
}
|
|
func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
|
|
// Fast-path: check if a MessageDescriptor is cached for this concrete type.
|
|
if mi, ok := legacyMessageDescCache.Load(t); ok {
|
|
return mi.(pref.MessageDescriptor)
|
|
}
|
|
|
|
// Slow-path: initialize MessageDescriptor from the raw descriptor.
|
|
mv := reflect.Zero(t).Interface()
|
|
if _, ok := mv.(pref.ProtoMessage); ok {
|
|
panic(fmt.Sprintf("%v already implements proto.Message", t))
|
|
}
|
|
mdV1, ok := mv.(messageV1)
|
|
if !ok {
|
|
return aberrantLoadMessageDesc(t, name)
|
|
}
|
|
|
|
// If this is a dynamic message type where there isn't a 1-1 mapping between
|
|
// Go and protobuf types, calling the Descriptor method on the zero value of
|
|
// the message type isn't likely to work. If it panics, swallow the panic and
|
|
// continue as if the Descriptor method wasn't present.
|
|
b, idxs := func() ([]byte, []int) {
|
|
defer func() {
|
|
recover()
|
|
}()
|
|
return mdV1.Descriptor()
|
|
}()
|
|
if b == nil {
|
|
return aberrantLoadMessageDesc(t, name)
|
|
}
|
|
|
|
// If the Go type has no fields, then this might be a proto3 empty message
|
|
// from before the size cache was added. If there are any fields, check to
|
|
// see that at least one of them looks like something we generated.
|
|
if nfield := t.Elem().NumField(); nfield > 0 {
|
|
hasProtoField := false
|
|
for i := 0; i < nfield; i++ {
|
|
f := t.Elem().Field(i)
|
|
if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
|
|
hasProtoField = true
|
|
break
|
|
}
|
|
}
|
|
if !hasProtoField {
|
|
return aberrantLoadMessageDesc(t, name)
|
|
}
|
|
}
|
|
|
|
md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
|
|
for _, i := range idxs[1:] {
|
|
md = md.Messages().Get(i)
|
|
}
|
|
if name != "" && md.FullName() != name {
|
|
panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
|
|
}
|
|
if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
|
|
return md.(protoreflect.MessageDescriptor)
|
|
}
|
|
return md
|
|
}
|
|
|
|
var (
|
|
aberrantMessageDescLock sync.Mutex
|
|
aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
|
|
)
|
|
|
|
// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
|
|
// which must not implement protoreflect.ProtoMessage or messageV1.
|
|
//
|
|
// This is a best-effort derivation of the message descriptor using the protobuf
|
|
// tags on the struct fields.
|
|
func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
|
|
aberrantMessageDescLock.Lock()
|
|
defer aberrantMessageDescLock.Unlock()
|
|
if aberrantMessageDescCache == nil {
|
|
aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
|
|
}
|
|
return aberrantLoadMessageDescReentrant(t, name)
|
|
}
|
|
func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
|
|
// Fast-path: check if an MessageDescriptor is cached for this concrete type.
|
|
if md, ok := aberrantMessageDescCache[t]; ok {
|
|
return md
|
|
}
|
|
|
|
// Slow-path: construct a descriptor from the Go struct type (best-effort).
|
|
// Cache the MessageDescriptor early on so that we can resolve internal
|
|
// cyclic references.
|
|
md := &filedesc.Message{L2: new(filedesc.MessageL2)}
|
|
md.L0.FullName = aberrantDeriveMessageName(t, name)
|
|
md.L0.ParentFile = filedesc.SurrogateProto2
|
|
aberrantMessageDescCache[t] = md
|
|
|
|
if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
|
|
return md
|
|
}
|
|
|
|
// Try to determine if the message is using proto3 by checking scalars.
|
|
for i := 0; i < t.Elem().NumField(); i++ {
|
|
f := t.Elem().Field(i)
|
|
if tag := f.Tag.Get("protobuf"); tag != "" {
|
|
switch f.Type.Kind() {
|
|
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
|
|
md.L0.ParentFile = filedesc.SurrogateProto3
|
|
}
|
|
for _, s := range strings.Split(tag, ",") {
|
|
if s == "proto3" {
|
|
md.L0.ParentFile = filedesc.SurrogateProto3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Obtain a list of oneof wrapper types.
|
|
var oneofWrappers []reflect.Type
|
|
if fn, ok := t.MethodByName("XXX_OneofFuncs"); ok {
|
|
vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3]
|
|
for _, v := range vs.Interface().([]interface{}) {
|
|
oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
|
|
}
|
|
}
|
|
if fn, ok := t.MethodByName("XXX_OneofWrappers"); ok {
|
|
vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
|
|
for _, v := range vs.Interface().([]interface{}) {
|
|
oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
|
|
}
|
|
}
|
|
|
|
// Obtain a list of the extension ranges.
|
|
if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
|
|
vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
|
|
for i := 0; i < vs.Len(); i++ {
|
|
v := vs.Index(i)
|
|
md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
|
|
pref.FieldNumber(v.FieldByName("Start").Int()),
|
|
pref.FieldNumber(v.FieldByName("End").Int() + 1),
|
|
})
|
|
md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
|
|
}
|
|
}
|
|
|
|
// Derive the message fields by inspecting the struct fields.
|
|
for i := 0; i < t.Elem().NumField(); i++ {
|
|
f := t.Elem().Field(i)
|
|
if tag := f.Tag.Get("protobuf"); tag != "" {
|
|
tagKey := f.Tag.Get("protobuf_key")
|
|
tagVal := f.Tag.Get("protobuf_val")
|
|
aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
|
|
}
|
|
if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
|
|
n := len(md.L2.Oneofs.List)
|
|
md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
|
|
od := &md.L2.Oneofs.List[n]
|
|
od.L0.FullName = md.FullName().Append(pref.Name(tag))
|
|
od.L0.ParentFile = md.L0.ParentFile
|
|
od.L0.Parent = md
|
|
od.L0.Index = n
|
|
|
|
for _, t := range oneofWrappers {
|
|
if t.Implements(f.Type) {
|
|
f := t.Elem().Field(0)
|
|
if tag := f.Tag.Get("protobuf"); tag != "" {
|
|
aberrantAppendField(md, f.Type, tag, "", "")
|
|
fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
|
|
fd.L1.ContainingOneof = od
|
|
od.L1.Fields.List = append(od.L1.Fields.List, fd)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return md
|
|
}
|
|
|
|
func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
|
|
if name.IsValid() {
|
|
return name
|
|
}
|
|
func() {
|
|
defer func() { recover() }() // swallow possible nil panics
|
|
if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
|
|
name = pref.FullName(m.XXX_MessageName())
|
|
}
|
|
}()
|
|
if name.IsValid() {
|
|
return name
|
|
}
|
|
if t.Kind() == reflect.Ptr {
|
|
t = t.Elem()
|
|
}
|
|
return AberrantDeriveFullName(t)
|
|
}
|
|
|
|
func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
|
|
t := goType
|
|
isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
|
|
isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
|
|
if isOptional || isRepeated {
|
|
t = t.Elem()
|
|
}
|
|
fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
|
|
|
|
// Append field descriptor to the message.
|
|
n := len(md.L2.Fields.List)
|
|
md.L2.Fields.List = append(md.L2.Fields.List, *fd)
|
|
fd = &md.L2.Fields.List[n]
|
|
fd.L0.FullName = md.FullName().Append(fd.Name())
|
|
fd.L0.ParentFile = md.L0.ParentFile
|
|
fd.L0.Parent = md
|
|
fd.L0.Index = n
|
|
|
|
if fd.L1.IsWeak || fd.L1.HasPacked {
|
|
fd.L1.Options = func() pref.ProtoMessage {
|
|
opts := descopts.Field.ProtoReflect().New()
|
|
if fd.L1.IsWeak {
|
|
opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
|
|
}
|
|
if fd.L1.HasPacked {
|
|
opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
|
|
}
|
|
return opts.Interface()
|
|
}
|
|
}
|
|
|
|
// Populate Enum and Message.
|
|
if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
|
|
switch v := reflect.Zero(t).Interface().(type) {
|
|
case pref.Enum:
|
|
fd.L1.Enum = v.Descriptor()
|
|
default:
|
|
fd.L1.Enum = LegacyLoadEnumDesc(t)
|
|
}
|
|
}
|
|
if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
|
|
switch v := reflect.Zero(t).Interface().(type) {
|
|
case pref.ProtoMessage:
|
|
fd.L1.Message = v.ProtoReflect().Descriptor()
|
|
case messageV1:
|
|
fd.L1.Message = LegacyLoadMessageDesc(t)
|
|
default:
|
|
if t.Kind() == reflect.Map {
|
|
n := len(md.L1.Messages.List)
|
|
md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
|
|
md2 := &md.L1.Messages.List[n]
|
|
md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
|
|
md2.L0.ParentFile = md.L0.ParentFile
|
|
md2.L0.Parent = md
|
|
md2.L0.Index = n
|
|
|
|
md2.L1.IsMapEntry = true
|
|
md2.L2.Options = func() pref.ProtoMessage {
|
|
opts := descopts.Message.ProtoReflect().New()
|
|
opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
|
|
return opts.Interface()
|
|
}
|
|
|
|
aberrantAppendField(md2, t.Key(), tagKey, "", "")
|
|
aberrantAppendField(md2, t.Elem(), tagVal, "", "")
|
|
|
|
fd.L1.Message = md2
|
|
break
|
|
}
|
|
fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
|
|
}
|
|
}
|
|
}
|
|
|
|
type placeholderEnumValues struct {
|
|
protoreflect.EnumValueDescriptors
|
|
}
|
|
|
|
func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
|
|
return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
|
|
}
|
|
|
|
// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
|
|
type legacyMarshaler interface {
|
|
Marshal() ([]byte, error)
|
|
}
|
|
|
|
// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
|
|
type legacyUnmarshaler interface {
|
|
Unmarshal([]byte) error
|
|
}
|
|
|
|
var legacyProtoMethods = &piface.Methods{
|
|
Marshal: legacyMarshal,
|
|
Unmarshal: legacyUnmarshal,
|
|
|
|
// We have no way to tell whether the type's Marshal method
|
|
// supports deterministic serialization or not, but this
|
|
// preserves the v1 implementation's behavior of always
|
|
// calling Marshal methods when present.
|
|
Flags: piface.SupportMarshalDeterministic,
|
|
}
|
|
|
|
func legacyMarshal(m protoreflect.Message, in piface.MarshalInput, opts piface.MarshalOptions) (piface.MarshalOutput, error) {
|
|
v := m.(unwrapper).protoUnwrap()
|
|
marshaler, ok := v.(legacyMarshaler)
|
|
if !ok {
|
|
return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
|
|
}
|
|
out, err := marshaler.Marshal()
|
|
if in.Buf != nil {
|
|
out = append(in.Buf, out...)
|
|
}
|
|
return piface.MarshalOutput{
|
|
Buf: out,
|
|
}, err
|
|
}
|
|
|
|
func legacyUnmarshal(m protoreflect.Message, in piface.UnmarshalInput, opts piface.UnmarshalOptions) (piface.UnmarshalOutput, error) {
|
|
v := m.(unwrapper).protoUnwrap()
|
|
unmarshaler, ok := v.(legacyUnmarshaler)
|
|
if !ok {
|
|
return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
|
|
}
|
|
return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
|
|
}
|
|
|
|
// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
|
|
type aberrantMessageType struct {
|
|
t reflect.Type
|
|
}
|
|
|
|
func (mt aberrantMessageType) New() pref.Message {
|
|
return aberrantMessage{reflect.Zero(mt.t)}
|
|
}
|
|
func (mt aberrantMessageType) Zero() pref.Message {
|
|
return aberrantMessage{reflect.Zero(mt.t)}
|
|
}
|
|
func (mt aberrantMessageType) GoType() reflect.Type {
|
|
return mt.t
|
|
}
|
|
func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
|
|
return LegacyLoadMessageDesc(mt.t)
|
|
}
|
|
|
|
// aberrantMessage implements Message for all types other than pointer-to-struct.
|
|
//
|
|
// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
|
|
// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
|
|
// not much that can be done with values of this type.
|
|
type aberrantMessage struct {
|
|
v reflect.Value
|
|
}
|
|
|
|
func (m aberrantMessage) ProtoReflect() pref.Message {
|
|
return m
|
|
}
|
|
|
|
func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
|
|
return LegacyLoadMessageDesc(m.v.Type())
|
|
}
|
|
func (m aberrantMessage) Type() pref.MessageType {
|
|
return aberrantMessageType{m.v.Type()}
|
|
}
|
|
func (m aberrantMessage) New() pref.Message {
|
|
return aberrantMessage{reflect.Zero(m.v.Type())}
|
|
}
|
|
func (m aberrantMessage) Interface() pref.ProtoMessage {
|
|
return m
|
|
}
|
|
func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
|
|
}
|
|
func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) Clear(pref.FieldDescriptor) {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
|
|
panic("invalid field descriptor")
|
|
}
|
|
func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
|
|
panic("invalid oneof descriptor")
|
|
}
|
|
func (m aberrantMessage) GetUnknown() pref.RawFields {
|
|
return nil
|
|
}
|
|
func (m aberrantMessage) SetUnknown(pref.RawFields) {
|
|
// SetUnknown discards its input on messages which don't support unknown field storage.
|
|
}
|
|
func (m aberrantMessage) IsValid() bool {
|
|
// An invalid message is a read-only, empty message. Since we don't know anything
|
|
// about the alleged contents of this message, we can't say with confidence that
|
|
// it is invalid in this sense. Therefore, report it as valid.
|
|
return true
|
|
}
|
|
func (m aberrantMessage) ProtoMethods() *piface.Methods {
|
|
return legacyProtoMethods
|
|
}
|
|
func (m aberrantMessage) protoUnwrap() interface{} {
|
|
return m.v.Interface()
|
|
}
|