protobuf-go/encoding/prototext/decode.go
Joe Tsai 1799d1111a all: rename tag and flags for legacy support
Rename build tag "proto1_legacy" -> "protolegacy"
to be consistent with the "protoreflect" tag.

Rename flag constant "Proto1Legacy" -> "ProtoLegacy" since
it covers more than simply proto1 legacy features.
For example, it covers alpha-features of proto3 that
were eventually removed from the final proto3 release.

Change-Id: I0f4fcbadd4b5a61c87645e2e5be11d187e59157c
Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/189345
Reviewed-by: Damien Neil <dneil@google.com>
2019-08-08 20:49:00 +00:00

475 lines
14 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package prototext
import (
"fmt"
"strings"
"unicode/utf8"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/encoding/text"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/fieldnum"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/set"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
// Unmarshal reads the given []byte into the given proto.Message.
func Unmarshal(b []byte, m proto.Message) error {
return UnmarshalOptions{}.Unmarshal(b, m)
}
// UnmarshalOptions is a configurable textproto format unmarshaler.
type UnmarshalOptions struct {
pragma.NoUnkeyedLiterals
// AllowPartial accepts input for messages that will result in missing
// required fields. If AllowPartial is false (the default), Unmarshal will
// return error if there are any missing required fields.
AllowPartial bool
// Resolver is used for looking up types when unmarshaling
// google.protobuf.Any messages or extension fields.
// If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.MessageTypeResolver
protoregistry.ExtensionTypeResolver
}
}
// Unmarshal reads the given []byte and populates the given proto.Message using options in
// UnmarshalOptions object.
func (o UnmarshalOptions) Unmarshal(b []byte, m proto.Message) error {
// Clear all fields before populating it.
// TODO: Determine if this needs to be consistent with protojson and binary unmarshal where
// behavior is to merge values into existing message. If decision is to not clear the fields
// ahead, code will need to be updated properly when merging nested messages.
proto.Reset(m)
// Parse into text.Value of message type.
val, err := text.Unmarshal(b)
if err != nil {
return err
}
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
err = o.unmarshalMessage(val.Message(), m.ProtoReflect())
if err != nil {
return err
}
if o.AllowPartial {
return nil
}
return proto.IsInitialized(m)
}
// unmarshalMessage unmarshals a [][2]text.Value message into the given protoreflect.Message.
func (o UnmarshalOptions) unmarshalMessage(tmsg [][2]text.Value, m pref.Message) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
// Handle expanded Any message.
if messageDesc.FullName() == "google.protobuf.Any" && isExpandedAny(tmsg) {
return o.unmarshalAny(tmsg[0], m)
}
var seenNums set.Ints
var seenOneofs set.Ints
fieldDescs := messageDesc.Fields()
for _, tfield := range tmsg {
tkey := tfield[0]
tval := tfield[1]
var fd pref.FieldDescriptor
var name pref.Name
switch tkey.Type() {
case text.Name:
name, _ = tkey.Name()
fd = fieldDescs.ByName(name)
switch {
case fd == nil:
// The proto name of a group field is in all lowercase,
// while the textproto field name is the group message name.
// Check to make sure that group name is correct.
gd := fieldDescs.ByName(pref.Name(strings.ToLower(string(name))))
if gd != nil && gd.Kind() == pref.GroupKind && gd.Message().Name() == name {
fd = gd
}
case fd.Kind() == pref.GroupKind && fd.Message().Name() != name:
fd = nil // reset since field name is actually the message name
case fd.IsWeak() && fd.Message().IsPlaceholder():
fd = nil // reset since the weak reference is not linked in
}
case text.String:
// Handle extensions only. This code path is not for Any.
if messageDesc.FullName() == "google.protobuf.Any" {
break
}
// Extensions have to be registered first in the message's
// ExtensionTypes before setting a value to it.
extName := pref.FullName(tkey.String())
// Check first if it is already registered. This is the case for
// repeated fields.
xt, err := o.findExtension(extName)
if err != nil && err != protoregistry.NotFound {
return errors.New("unable to resolve [%v]: %v", extName, err)
}
if xt != nil {
fd = xt.Descriptor()
}
}
if fd == nil {
// Ignore reserved names.
if messageDesc.ReservedNames().Has(name) {
continue
}
// TODO: Can provide option to ignore unknown message fields.
return errors.New("%v contains unknown field: %v", messageDesc.FullName(), tkey)
}
switch {
case fd.IsList():
// If input is not a list, turn it into a list.
var items []text.Value
if tval.Type() != text.List {
items = []text.Value{tval}
} else {
items = tval.List()
}
list := m.Mutable(fd).List()
if err := o.unmarshalList(items, fd, list); err != nil {
return err
}
case fd.IsMap():
// If input is not a list, turn it into a list.
var items []text.Value
if tval.Type() != text.List {
items = []text.Value{tval}
} else {
items = tval.List()
}
mmap := m.Mutable(fd).Map()
if err := o.unmarshalMap(items, fd, mmap); err != nil {
return err
}
default:
// If field is a oneof, check if it has already been set.
if od := fd.ContainingOneof(); od != nil {
idx := uint64(od.Index())
if seenOneofs.Has(idx) {
return errors.New("oneof %v is already set", od.FullName())
}
seenOneofs.Set(idx)
}
// Required or optional fields.
num := uint64(fd.Number())
if seenNums.Has(num) {
return errors.New("non-repeated field %v is repeated", fd.FullName())
}
if err := o.unmarshalSingular(tval, fd, m); err != nil {
return err
}
seenNums.Set(num)
}
}
return nil
}
// findExtension returns protoreflect.ExtensionType from the Resolver if found.
func (o UnmarshalOptions) findExtension(xtName pref.FullName) (pref.ExtensionType, error) {
xt, err := o.Resolver.FindExtensionByName(xtName)
if err == nil {
return xt, nil
}
return messageset.FindMessageSetExtension(o.Resolver, xtName)
}
// unmarshalSingular unmarshals given text.Value into the non-repeated field.
func (o UnmarshalOptions) unmarshalSingular(input text.Value, fd pref.FieldDescriptor, m pref.Message) error {
var val pref.Value
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
if input.Type() != text.Message {
return errors.New("%v contains invalid message/group value: %v", fd.FullName(), input)
}
m2 := m.NewMessage(fd)
if err := o.unmarshalMessage(input.Message(), m2); err != nil {
return err
}
val = pref.ValueOf(m2)
default:
var err error
val, err = unmarshalScalar(input, fd)
if err != nil {
return err
}
}
m.Set(fd, val)
return nil
}
// unmarshalScalar converts the given text.Value to a scalar/enum protoreflect.Value specified in
// the given FieldDescriptor. Caller should not pass in a FieldDescriptor for a message/group kind.
func unmarshalScalar(input text.Value, fd pref.FieldDescriptor) (pref.Value, error) {
const b32 = false
const b64 = true
switch kind := fd.Kind(); kind {
case pref.BoolKind:
if b, ok := input.Bool(); ok {
return pref.ValueOf(bool(b)), nil
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
if n, ok := input.Int(b32); ok {
return pref.ValueOf(int32(n)), nil
}
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
if n, ok := input.Int(b64); ok {
return pref.ValueOf(int64(n)), nil
}
case pref.Uint32Kind, pref.Fixed32Kind:
if n, ok := input.Uint(b32); ok {
return pref.ValueOf(uint32(n)), nil
}
case pref.Uint64Kind, pref.Fixed64Kind:
if n, ok := input.Uint(b64); ok {
return pref.ValueOf(uint64(n)), nil
}
case pref.FloatKind:
if n, ok := input.Float(b32); ok {
return pref.ValueOf(float32(n)), nil
}
case pref.DoubleKind:
if n, ok := input.Float(b64); ok {
return pref.ValueOf(float64(n)), nil
}
case pref.StringKind:
if input.Type() == text.String {
s := input.String()
if utf8.ValidString(s) {
return pref.ValueOf(s), nil
}
return pref.Value{}, errors.InvalidUTF8(string(fd.FullName()))
}
case pref.BytesKind:
if input.Type() == text.String {
return pref.ValueOf([]byte(input.String())), nil
}
case pref.EnumKind:
// If input is int32, use directly.
if n, ok := input.Int(b32); ok {
return pref.ValueOf(pref.EnumNumber(n)), nil
}
if name, ok := input.Name(); ok {
// Lookup EnumNumber based on name.
if enumVal := fd.Enum().Values().ByName(name); enumVal != nil {
return pref.ValueOf(enumVal.Number()), nil
}
}
default:
panic(fmt.Sprintf("invalid scalar kind %v", kind))
}
return pref.Value{}, errors.New("%v contains invalid scalar value: %v", fd.FullName(), input)
}
// unmarshalList unmarshals given []text.Value into given protoreflect.List.
func (o UnmarshalOptions) unmarshalList(inputList []text.Value, fd pref.FieldDescriptor, list pref.List) error {
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
for _, input := range inputList {
if input.Type() != text.Message {
return errors.New("%v contains invalid message/group value: %v", fd.FullName(), input)
}
m := list.NewMessage()
if err := o.unmarshalMessage(input.Message(), m); err != nil {
return err
}
list.Append(pref.ValueOf(m))
}
default:
for _, input := range inputList {
val, err := unmarshalScalar(input, fd)
if err != nil {
return err
}
list.Append(val)
}
}
return nil
}
// unmarshalMap unmarshals given []text.Value into given protoreflect.Map.
func (o UnmarshalOptions) unmarshalMap(input []text.Value, fd pref.FieldDescriptor, mmap pref.Map) error {
// Determine ahead whether map entry is a scalar type or a message type in order to call the
// appropriate unmarshalMapValue func inside the for loop below.
unmarshalMapValue := unmarshalMapScalarValue
switch fd.MapValue().Kind() {
case pref.MessageKind, pref.GroupKind:
unmarshalMapValue = o.unmarshalMapMessageValue
}
for _, entry := range input {
if entry.Type() != text.Message {
return errors.New("%v contains invalid map entry: %v", fd.FullName(), entry)
}
tkey, tval, err := parseMapEntry(entry.Message(), fd.FullName())
if err != nil {
return err
}
pkey, err := unmarshalMapKey(tkey, fd.MapKey())
if err != nil {
return err
}
err = unmarshalMapValue(tval, pkey, fd.MapValue(), mmap)
if err != nil {
return err
}
}
return nil
}
// parseMapEntry parses [][2]text.Value for field names key and value, and return corresponding
// field values. If there are duplicate field names, the value for the last field is returned. If
// the field name does not exist, it will return the zero value of text.Value. It will return an
// error if there are unknown field names.
func parseMapEntry(mapEntry [][2]text.Value, name pref.FullName) (key text.Value, value text.Value, err error) {
for _, field := range mapEntry {
keyStr, ok := field[0].Name()
if ok {
switch keyStr {
case "key":
if key.Type() != 0 {
return key, value, errors.New("%v contains duplicate key field", name)
}
key = field[1]
case "value":
if value.Type() != 0 {
return key, value, errors.New("%v contains duplicate value field", name)
}
value = field[1]
default:
ok = false
}
}
if !ok {
// TODO: Do not return error if ignore unknown option is added and enabled.
return key, value, errors.New("%v contains unknown map entry name: %v", name, field[0])
}
}
return key, value, nil
}
// unmarshalMapKey converts given text.Value into a protoreflect.MapKey. A map key type is any
// integral or string type.
func unmarshalMapKey(input text.Value, fd pref.FieldDescriptor) (pref.MapKey, error) {
// If input is not set, use the zero value.
if input.Type() == 0 {
return fd.Default().MapKey(), nil
}
val, err := unmarshalScalar(input, fd)
if err != nil {
return pref.MapKey{}, errors.New("%v contains invalid key: %v", fd.FullName(), input)
}
return val.MapKey(), nil
}
// unmarshalMapMessageValue unmarshals given message-type text.Value into a protoreflect.Map for
// the given MapKey.
func (o UnmarshalOptions) unmarshalMapMessageValue(input text.Value, pkey pref.MapKey, _ pref.FieldDescriptor, mmap pref.Map) error {
var value [][2]text.Value
if input.Type() != 0 {
value = input.Message()
}
m := mmap.NewMessage()
if err := o.unmarshalMessage(value, m); err != nil {
return err
}
mmap.Set(pkey, pref.ValueOf(m))
return nil
}
// unmarshalMapScalarValue unmarshals given scalar-type text.Value into a protoreflect.Map
// for the given MapKey.
func unmarshalMapScalarValue(input text.Value, pkey pref.MapKey, fd pref.FieldDescriptor, mmap pref.Map) error {
var val pref.Value
if input.Type() == 0 {
val = fd.Default()
} else {
var err error
val, err = unmarshalScalar(input, fd)
if err != nil {
return err
}
}
mmap.Set(pkey, val)
return nil
}
// isExpandedAny returns true if given [][2]text.Value may be an expanded Any that contains only one
// field with key type of text.String type and value type of text.Message.
func isExpandedAny(tmsg [][2]text.Value) bool {
if len(tmsg) != 1 {
return false
}
field := tmsg[0]
return field[0].Type() == text.String && field[1].Type() == text.Message
}
// unmarshalAny unmarshals an expanded Any textproto. This method assumes that the given
// tfield has key type of text.String and value type of text.Message.
func (o UnmarshalOptions) unmarshalAny(tfield [2]text.Value, m pref.Message) error {
typeURL := tfield[0].String()
value := tfield[1].Message()
mt, err := o.Resolver.FindMessageByURL(typeURL)
if err != nil {
return errors.New("unable to resolve message [%v]: %v", typeURL, err)
}
// Create new message for the embedded message type and unmarshal the
// value into it.
m2 := mt.New()
if err := o.unmarshalMessage(value, m2); err != nil {
return err
}
// Serialize the embedded message and assign the resulting bytes to the value field.
b, err := proto.MarshalOptions{
AllowPartial: true, // never check required fields inside an Any
Deterministic: true,
}.Marshal(m2.Interface())
if err != nil {
return err
}
fds := m.Descriptor().Fields()
fdType := fds.ByNumber(fieldnum.Any_TypeUrl)
fdValue := fds.ByNumber(fieldnum.Any_Value)
m.Set(fdType, pref.ValueOf(typeURL))
m.Set(fdValue, pref.ValueOf(b))
return nil
}