Damien Neil 8c86fc5e7d all: remove non-fatal UTF-8 validation errors (and non-fatal in general)
Immediately abort (un)marshal operations when encountering invalid UTF-8
data in proto3 strings. No other proto implementation supports non-UTF-8
data in proto3 strings (and many reject it in proto2 strings as well).
Producing invalid output is an interoperability threat (other
implementations won't be able to read it).

The case where existing string data is found to contain non-UTF8 data is
better handled by changing the field to the `bytes` type, which (aside
from UTF-8 validation) is wire-compatible with `string`.

Remove the errors.NonFatal type, since there are no remaining cases
where it is needed. "Non-fatal" errors which produce results and a
non-nil error are problematic because they compose poorly; the better
approach is to take an option like AllowPartial indicating which
conditions to check for.

Change-Id: I9d189ec6ffda7b5d96d094aa1b290af2e3f23736
Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/183098
Reviewed-by: Joe Tsai <thebrokentoaster@gmail.com>
2019-06-20 20:55:13 +00:00

243 lines
7.0 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
import (
"bytes"
"io"
"math"
"math/bits"
"strconv"
"strings"
"unicode"
"unicode/utf16"
"unicode/utf8"
"google.golang.org/protobuf/internal/errors"
)
func (p *encoder) marshalString(v Value) error {
var err error
p.out, err = appendString(p.out, v, p.outputASCII)
return err
}
func appendString(out []byte, v Value, outputASCII bool) ([]byte, error) {
if v.Type() != String {
return nil, errors.New("invalid type %v, expected string", v.Type())
}
if len(v.raw) > 0 {
return append(out, v.raw...), nil
}
in := v.String()
out = append(out, '"')
i := indexNeedEscapeInString(in)
in, out = in[i:], append(out, in[:i]...)
for len(in) > 0 {
switch r, n := utf8.DecodeRuneInString(in); {
case r == utf8.RuneError && n == 1:
// We do not report invalid UTF-8 because strings in the text format
// are used to represent both the proto string and bytes type.
r = rune(in[0])
fallthrough
case r < ' ' || r == '"' || r == '\\':
out = append(out, '\\')
switch r {
case '"', '\\':
out = append(out, byte(r))
case '\n':
out = append(out, 'n')
case '\r':
out = append(out, 'r')
case '\t':
out = append(out, 't')
default:
out = append(out, 'x')
out = append(out, "00"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
}
in = in[n:]
case outputASCII && r >= utf8.RuneSelf:
out = append(out, '\\')
if r <= math.MaxUint16 {
out = append(out, 'u')
out = append(out, "0000"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
} else {
out = append(out, 'U')
out = append(out, "00000000"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
}
in = in[n:]
default:
i := indexNeedEscapeInString(in[n:])
in, out = in[n+i:], append(out, in[:n+i]...)
}
}
out = append(out, '"')
return out, nil
}
func (p *decoder) unmarshalString() (Value, error) {
v, n, err := consumeString(p.in)
p.consume(n)
return v, err
}
func consumeString(in []byte) (Value, int, error) {
in0 := in
if len(in) == 0 {
return Value{}, 0, io.ErrUnexpectedEOF
}
quote := in[0]
if in[0] != '"' && in[0] != '\'' {
return Value{}, 0, newSyntaxError("invalid character %q at start of string", in[0])
}
in = in[1:]
i := indexNeedEscapeInBytes(in)
in, out := in[i:], in[:i:i] // set cap to prevent mutations
for len(in) > 0 {
switch r, n := utf8.DecodeRune(in); {
case r == utf8.RuneError && n == 1:
return Value{}, 0, newSyntaxError("invalid UTF-8 detected")
case r == 0 || r == '\n':
return Value{}, 0, newSyntaxError("invalid character %q in string", r)
case r == rune(quote):
in = in[1:]
n := len(in0) - len(in)
v := rawValueOf(string(out), in0[:n:n])
return v, n, nil
case r == '\\':
if len(in) < 2 {
return Value{}, 0, io.ErrUnexpectedEOF
}
switch r := in[1]; r {
case '"', '\'', '\\', '?':
in, out = in[2:], append(out, r)
case 'a':
in, out = in[2:], append(out, '\a')
case 'b':
in, out = in[2:], append(out, '\b')
case 'n':
in, out = in[2:], append(out, '\n')
case 'r':
in, out = in[2:], append(out, '\r')
case 't':
in, out = in[2:], append(out, '\t')
case 'v':
in, out = in[2:], append(out, '\v')
case 'f':
in, out = in[2:], append(out, '\f')
case '0', '1', '2', '3', '4', '5', '6', '7':
// One, two, or three octal characters.
n := len(in[1:]) - len(bytes.TrimLeft(in[1:], "01234567"))
if n > 3 {
n = 3
}
v, err := strconv.ParseUint(string(in[1:1+n]), 8, 8)
if err != nil {
return Value{}, 0, newSyntaxError("invalid octal escape code %q in string", in[:1+n])
}
in, out = in[1+n:], append(out, byte(v))
case 'x':
// One or two hexadecimal characters.
n := len(in[2:]) - len(bytes.TrimLeft(in[2:], "0123456789abcdefABCDEF"))
if n > 2 {
n = 2
}
v, err := strconv.ParseUint(string(in[2:2+n]), 16, 8)
if err != nil {
return Value{}, 0, newSyntaxError("invalid hex escape code %q in string", in[:2+n])
}
in, out = in[2+n:], append(out, byte(v))
case 'u', 'U':
// Four or eight hexadecimal characters
n := 6
if r == 'U' {
n = 10
}
if len(in) < n {
return Value{}, 0, io.ErrUnexpectedEOF
}
v, err := strconv.ParseUint(string(in[2:n]), 16, 32)
if utf8.MaxRune < v || err != nil {
return Value{}, 0, newSyntaxError("invalid Unicode escape code %q in string", in[:n])
}
in = in[n:]
r := rune(v)
if utf16.IsSurrogate(r) {
if len(in) < 6 {
return Value{}, 0, io.ErrUnexpectedEOF
}
v, err := strconv.ParseUint(string(in[2:6]), 16, 16)
r = utf16.DecodeRune(r, rune(v))
if in[0] != '\\' || in[1] != 'u' || r == unicode.ReplacementChar || err != nil {
return Value{}, 0, newSyntaxError("invalid Unicode escape code %q in string", in[:6])
}
in = in[6:]
}
out = append(out, string(r)...)
default:
return Value{}, 0, newSyntaxError("invalid escape code %q in string", in[:2])
}
default:
i := indexNeedEscapeInBytes(in[n:])
in, out = in[n+i:], append(out, in[:n+i]...)
}
}
return Value{}, 0, io.ErrUnexpectedEOF
}
// unmarshalStrings unmarshals multiple strings.
// This differs from unmarshalString since the text format allows
// multiple back-to-back string literals where they are semantically treated
// as a single large string with all values concatenated.
//
// E.g., `"foo" "bar" "baz"` => ValueOf("foobarbaz")
func (p *decoder) unmarshalStrings() (Value, error) {
// Note that the ending quote is sufficient to unambiguously mark the end
// of a string. Thus, the text grammar does not require intervening
// whitespace or control characters in-between strings.
// Thus, the following is valid:
// `"foo"'bar'"baz"` => ValueOf("foobarbaz")
b := p.in
var ss []string
for len(p.in) > 0 && (p.in[0] == '"' || p.in[0] == '\'') {
v, err := p.unmarshalString()
if err != nil {
return Value{}, err
}
ss = append(ss, v.String())
}
b = b[:len(b)-len(p.in)]
return rawValueOf(strings.Join(ss, ""), b[:len(b):len(b)]), nil
}
// indexNeedEscapeInString returns the index of the character that needs
// escaping. If no characters need escaping, this returns the input length.
func indexNeedEscapeInString(s string) int {
for i := 0; i < len(s); i++ {
if c := s[i]; c < ' ' || c == '"' || c == '\'' || c == '\\' || c >= utf8.RuneSelf {
return i
}
}
return len(s)
}
// indexNeedEscapeInBytes returns the index of the character that needs
// escaping. If no characters need escaping, this returns the input length.
// TODO: Remove this duplicate function when https://golang.org/issue/31506 gets
// resolved.
func indexNeedEscapeInBytes(b []byte) int {
for i := 0; i < len(b); {
c, size := utf8.DecodeRune(b[i:])
if c < ' ' || c == '"' || c == '\'' || c == '\\' || c >= utf8.RuneSelf {
return i
}
i += size
}
return len(b)
}