mirror of
https://github.com/protocolbuffers/protobuf-go.git
synced 2025-01-01 11:58:21 +00:00
f9212a8dfa
Modernize the documentation across the entire module to make use of the newer ability to linkify declarations. Change-Id: I440f9a3f025ec6fadfd9cba59b1dfb57028bf3f1 Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/309430 Reviewed-by: Michael Stapelberg <stapelberg@google.com> Reviewed-by: Damien Neil <dneil@google.com>
685 lines
22 KiB
Go
685 lines
22 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package protocmp
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"strings"
|
|
|
|
"github.com/google/go-cmp/cmp"
|
|
"github.com/google/go-cmp/cmp/cmpopts"
|
|
|
|
"google.golang.org/protobuf/proto"
|
|
"google.golang.org/protobuf/reflect/protoreflect"
|
|
)
|
|
|
|
var (
|
|
enumReflectType = reflect.TypeOf(Enum{})
|
|
messageReflectType = reflect.TypeOf(Message{})
|
|
)
|
|
|
|
// FilterEnum filters opt to only be applicable on a standalone [Enum],
|
|
// singular fields of enums, list fields of enums, or map fields of enum values,
|
|
// where the enum is the same type as the specified enum.
|
|
//
|
|
// The Go type of the last path step may be an:
|
|
// - [Enum] for singular fields, elements of a repeated field,
|
|
// values of a map field, or standalone [Enum] values
|
|
// - [][Enum] for list fields
|
|
// - map[K][Enum] for map fields
|
|
// - interface{} for a [Message] map entry value
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func FilterEnum(enum protoreflect.Enum, opt cmp.Option) cmp.Option {
|
|
return FilterDescriptor(enum.Descriptor(), opt)
|
|
}
|
|
|
|
// FilterMessage filters opt to only be applicable on a standalone [Message] values,
|
|
// singular fields of messages, list fields of messages, or map fields of
|
|
// message values, where the message is the same type as the specified message.
|
|
//
|
|
// The Go type of the last path step may be an:
|
|
// - [Message] for singular fields, elements of a repeated field,
|
|
// values of a map field, or standalone [Message] values
|
|
// - [][Message] for list fields
|
|
// - map[K][Message] for map fields
|
|
// - interface{} for a [Message] map entry value
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func FilterMessage(message proto.Message, opt cmp.Option) cmp.Option {
|
|
return FilterDescriptor(message.ProtoReflect().Descriptor(), opt)
|
|
}
|
|
|
|
// FilterField filters opt to only be applicable on the specified field
|
|
// in the message. It panics if a field of the given name does not exist.
|
|
//
|
|
// The Go type of the last path step may be an:
|
|
// - T for singular fields
|
|
// - []T for list fields
|
|
// - map[K]T for map fields
|
|
// - interface{} for a [Message] map entry value
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func FilterField(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
|
|
md := message.ProtoReflect().Descriptor()
|
|
return FilterDescriptor(mustFindFieldDescriptor(md, name), opt)
|
|
}
|
|
|
|
// FilterOneof filters opt to only be applicable on all fields within the
|
|
// specified oneof in the message. It panics if a oneof of the given name
|
|
// does not exist.
|
|
//
|
|
// The Go type of the last path step may be an:
|
|
// - T for singular fields
|
|
// - []T for list fields
|
|
// - map[K]T for map fields
|
|
// - interface{} for a [Message] map entry value
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func FilterOneof(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
|
|
md := message.ProtoReflect().Descriptor()
|
|
return FilterDescriptor(mustFindOneofDescriptor(md, name), opt)
|
|
}
|
|
|
|
// FilterDescriptor ignores the specified descriptor.
|
|
//
|
|
// The following descriptor types may be specified:
|
|
// - [protoreflect.EnumDescriptor]
|
|
// - [protoreflect.MessageDescriptor]
|
|
// - [protoreflect.FieldDescriptor]
|
|
// - [protoreflect.OneofDescriptor]
|
|
//
|
|
// For the behavior of each, see the corresponding filter function.
|
|
// Since this filter accepts a [protoreflect.FieldDescriptor], it can be used
|
|
// to also filter for extension fields as a [protoreflect.ExtensionDescriptor]
|
|
// is just an alias to [protoreflect.FieldDescriptor].
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func FilterDescriptor(desc protoreflect.Descriptor, opt cmp.Option) cmp.Option {
|
|
f := newNameFilters(desc)
|
|
return cmp.FilterPath(f.Filter, opt)
|
|
}
|
|
|
|
// IgnoreEnums ignores all enums of the specified types.
|
|
// It is equivalent to FilterEnum(enum, cmp.Ignore()) for each enum.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreEnums(enums ...protoreflect.Enum) cmp.Option {
|
|
var ds []protoreflect.Descriptor
|
|
for _, e := range enums {
|
|
ds = append(ds, e.Descriptor())
|
|
}
|
|
return IgnoreDescriptors(ds...)
|
|
}
|
|
|
|
// IgnoreMessages ignores all messages of the specified types.
|
|
// It is equivalent to [FilterMessage](message, [cmp.Ignore]()) for each message.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreMessages(messages ...proto.Message) cmp.Option {
|
|
var ds []protoreflect.Descriptor
|
|
for _, m := range messages {
|
|
ds = append(ds, m.ProtoReflect().Descriptor())
|
|
}
|
|
return IgnoreDescriptors(ds...)
|
|
}
|
|
|
|
// IgnoreFields ignores the specified fields in the specified message.
|
|
// It is equivalent to [FilterField](message, name, [cmp.Ignore]()) for each field
|
|
// in the message.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
|
|
var ds []protoreflect.Descriptor
|
|
md := message.ProtoReflect().Descriptor()
|
|
for _, s := range names {
|
|
ds = append(ds, mustFindFieldDescriptor(md, s))
|
|
}
|
|
return IgnoreDescriptors(ds...)
|
|
}
|
|
|
|
// IgnoreOneofs ignores fields of the specified oneofs in the specified message.
|
|
// It is equivalent to FilterOneof(message, name, cmp.Ignore()) for each oneof
|
|
// in the message.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreOneofs(message proto.Message, names ...protoreflect.Name) cmp.Option {
|
|
var ds []protoreflect.Descriptor
|
|
md := message.ProtoReflect().Descriptor()
|
|
for _, s := range names {
|
|
ds = append(ds, mustFindOneofDescriptor(md, s))
|
|
}
|
|
return IgnoreDescriptors(ds...)
|
|
}
|
|
|
|
// IgnoreDescriptors ignores the specified set of descriptors.
|
|
// It is equivalent to [FilterDescriptor](desc, [cmp.Ignore]()) for each descriptor.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreDescriptors(descs ...protoreflect.Descriptor) cmp.Option {
|
|
return cmp.FilterPath(newNameFilters(descs...).Filter, cmp.Ignore())
|
|
}
|
|
|
|
func mustFindFieldDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.FieldDescriptor {
|
|
d := findDescriptor(md, s)
|
|
if fd, ok := d.(protoreflect.FieldDescriptor); ok && fd.TextName() == string(s) {
|
|
return fd
|
|
}
|
|
|
|
var suggestion string
|
|
switch d := d.(type) {
|
|
case protoreflect.FieldDescriptor:
|
|
suggestion = fmt.Sprintf("; consider specifying field %q instead", d.TextName())
|
|
case protoreflect.OneofDescriptor:
|
|
suggestion = fmt.Sprintf("; consider specifying oneof %q with IgnoreOneofs instead", d.Name())
|
|
}
|
|
panic(fmt.Sprintf("message %q has no field %q%s", md.FullName(), s, suggestion))
|
|
}
|
|
|
|
func mustFindOneofDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.OneofDescriptor {
|
|
d := findDescriptor(md, s)
|
|
if od, ok := d.(protoreflect.OneofDescriptor); ok && d.Name() == s {
|
|
return od
|
|
}
|
|
|
|
var suggestion string
|
|
switch d := d.(type) {
|
|
case protoreflect.OneofDescriptor:
|
|
suggestion = fmt.Sprintf("; consider specifying oneof %q instead", d.Name())
|
|
case protoreflect.FieldDescriptor:
|
|
suggestion = fmt.Sprintf("; consider specifying field %q with IgnoreFields instead", d.TextName())
|
|
}
|
|
panic(fmt.Sprintf("message %q has no oneof %q%s", md.FullName(), s, suggestion))
|
|
}
|
|
|
|
func findDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.Descriptor {
|
|
// Exact match.
|
|
if fd := md.Fields().ByTextName(string(s)); fd != nil {
|
|
return fd
|
|
}
|
|
if od := md.Oneofs().ByName(s); od != nil && !od.IsSynthetic() {
|
|
return od
|
|
}
|
|
|
|
// Best-effort match.
|
|
//
|
|
// It's a common user mistake to use the CamelCased field name as it appears
|
|
// in the generated Go struct. Instead of complaining that it doesn't exist,
|
|
// suggest the real protobuf name that the user may have desired.
|
|
normalize := func(s protoreflect.Name) string {
|
|
return strings.Replace(strings.ToLower(string(s)), "_", "", -1)
|
|
}
|
|
for i := 0; i < md.Fields().Len(); i++ {
|
|
if fd := md.Fields().Get(i); normalize(fd.Name()) == normalize(s) {
|
|
return fd
|
|
}
|
|
}
|
|
for i := 0; i < md.Oneofs().Len(); i++ {
|
|
if od := md.Oneofs().Get(i); normalize(od.Name()) == normalize(s) {
|
|
return od
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type nameFilters struct {
|
|
names map[protoreflect.FullName]bool
|
|
}
|
|
|
|
func newNameFilters(descs ...protoreflect.Descriptor) *nameFilters {
|
|
f := &nameFilters{names: make(map[protoreflect.FullName]bool)}
|
|
for _, d := range descs {
|
|
switch d := d.(type) {
|
|
case protoreflect.EnumDescriptor:
|
|
f.names[d.FullName()] = true
|
|
case protoreflect.MessageDescriptor:
|
|
f.names[d.FullName()] = true
|
|
case protoreflect.FieldDescriptor:
|
|
f.names[d.FullName()] = true
|
|
case protoreflect.OneofDescriptor:
|
|
for i := 0; i < d.Fields().Len(); i++ {
|
|
f.names[d.Fields().Get(i).FullName()] = true
|
|
}
|
|
default:
|
|
panic("invalid descriptor type")
|
|
}
|
|
}
|
|
return f
|
|
}
|
|
|
|
func (f *nameFilters) Filter(p cmp.Path) bool {
|
|
vx, vy := p.Last().Values()
|
|
return (f.filterValue(vx) && f.filterValue(vy)) || f.filterFields(p)
|
|
}
|
|
|
|
func (f *nameFilters) filterFields(p cmp.Path) bool {
|
|
// Trim off trailing type-assertions so that the filter can match on the
|
|
// concrete value held within an interface value.
|
|
if _, ok := p.Last().(cmp.TypeAssertion); ok {
|
|
p = p[:len(p)-1]
|
|
}
|
|
|
|
// Filter for Message maps.
|
|
mi, ok := p.Index(-1).(cmp.MapIndex)
|
|
if !ok {
|
|
return false
|
|
}
|
|
ps := p.Index(-2)
|
|
if ps.Type() != messageReflectType {
|
|
return false
|
|
}
|
|
|
|
// Check field name.
|
|
vx, vy := ps.Values()
|
|
mx := vx.Interface().(Message)
|
|
my := vy.Interface().(Message)
|
|
k := mi.Key().String()
|
|
if f.filterFieldName(mx, k) && f.filterFieldName(my, k) {
|
|
return true
|
|
}
|
|
|
|
// Check field value.
|
|
vx, vy = mi.Values()
|
|
if f.filterFieldValue(vx) && f.filterFieldValue(vy) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func (f *nameFilters) filterFieldName(m Message, k string) bool {
|
|
if _, ok := m[k]; !ok {
|
|
return true // treat missing fields as already filtered
|
|
}
|
|
var fd protoreflect.FieldDescriptor
|
|
switch mm := m[messageTypeKey].(messageMeta); {
|
|
case protoreflect.Name(k).IsValid():
|
|
fd = mm.md.Fields().ByTextName(k)
|
|
default:
|
|
fd = mm.xds[k]
|
|
}
|
|
if fd != nil {
|
|
return f.names[fd.FullName()]
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (f *nameFilters) filterFieldValue(v reflect.Value) bool {
|
|
if !v.IsValid() {
|
|
return true // implies missing slice element or map entry
|
|
}
|
|
v = v.Elem() // map entries are always populated values
|
|
switch t := v.Type(); {
|
|
case t == enumReflectType || t == messageReflectType:
|
|
// Check for singular message or enum field.
|
|
return f.filterValue(v)
|
|
case t.Kind() == reflect.Slice && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
|
|
// Check for list field of enum or message type.
|
|
return f.filterValue(v.Index(0))
|
|
case t.Kind() == reflect.Map && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
|
|
// Check for map field of enum or message type.
|
|
return f.filterValue(v.MapIndex(v.MapKeys()[0]))
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (f *nameFilters) filterValue(v reflect.Value) bool {
|
|
if !v.IsValid() {
|
|
return true // implies missing slice element or map entry
|
|
}
|
|
if !v.CanInterface() {
|
|
return false // implies unexported struct field
|
|
}
|
|
switch v := v.Interface().(type) {
|
|
case Enum:
|
|
return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
|
|
case Message:
|
|
return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
|
|
}
|
|
return false
|
|
}
|
|
|
|
// IgnoreDefaultScalars ignores singular scalars that are unpopulated or
|
|
// explicitly set to the default value.
|
|
// This option does not effect elements in a list or entries in a map.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreDefaultScalars() cmp.Option {
|
|
return cmp.FilterPath(func(p cmp.Path) bool {
|
|
// Filter for Message maps.
|
|
mi, ok := p.Index(-1).(cmp.MapIndex)
|
|
if !ok {
|
|
return false
|
|
}
|
|
ps := p.Index(-2)
|
|
if ps.Type() != messageReflectType {
|
|
return false
|
|
}
|
|
|
|
// Check whether both fields are default or unpopulated scalars.
|
|
vx, vy := ps.Values()
|
|
mx := vx.Interface().(Message)
|
|
my := vy.Interface().(Message)
|
|
k := mi.Key().String()
|
|
return isDefaultScalar(mx, k) && isDefaultScalar(my, k)
|
|
}, cmp.Ignore())
|
|
}
|
|
|
|
func isDefaultScalar(m Message, k string) bool {
|
|
if _, ok := m[k]; !ok {
|
|
return true
|
|
}
|
|
|
|
var fd protoreflect.FieldDescriptor
|
|
switch mm := m[messageTypeKey].(messageMeta); {
|
|
case protoreflect.Name(k).IsValid():
|
|
fd = mm.md.Fields().ByTextName(k)
|
|
default:
|
|
fd = mm.xds[k]
|
|
}
|
|
if fd == nil || !fd.Default().IsValid() {
|
|
return false
|
|
}
|
|
switch fd.Kind() {
|
|
case protoreflect.BytesKind:
|
|
v, ok := m[k].([]byte)
|
|
return ok && bytes.Equal(fd.Default().Bytes(), v)
|
|
case protoreflect.FloatKind:
|
|
v, ok := m[k].(float32)
|
|
return ok && equalFloat64(fd.Default().Float(), float64(v))
|
|
case protoreflect.DoubleKind:
|
|
v, ok := m[k].(float64)
|
|
return ok && equalFloat64(fd.Default().Float(), float64(v))
|
|
case protoreflect.EnumKind:
|
|
v, ok := m[k].(Enum)
|
|
return ok && fd.Default().Enum() == v.Number()
|
|
default:
|
|
return reflect.DeepEqual(fd.Default().Interface(), m[k])
|
|
}
|
|
}
|
|
|
|
func equalFloat64(x, y float64) bool {
|
|
return x == y || (math.IsNaN(x) && math.IsNaN(y))
|
|
}
|
|
|
|
// IgnoreEmptyMessages ignores messages that are empty or unpopulated.
|
|
// It applies to standalone [Message] values, singular message fields,
|
|
// list fields of messages, and map fields of message values.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreEmptyMessages() cmp.Option {
|
|
return cmp.FilterPath(func(p cmp.Path) bool {
|
|
vx, vy := p.Last().Values()
|
|
return (isEmptyMessage(vx) && isEmptyMessage(vy)) || isEmptyMessageFields(p)
|
|
}, cmp.Ignore())
|
|
}
|
|
|
|
func isEmptyMessageFields(p cmp.Path) bool {
|
|
// Filter for Message maps.
|
|
mi, ok := p.Index(-1).(cmp.MapIndex)
|
|
if !ok {
|
|
return false
|
|
}
|
|
ps := p.Index(-2)
|
|
if ps.Type() != messageReflectType {
|
|
return false
|
|
}
|
|
|
|
// Check field value.
|
|
vx, vy := mi.Values()
|
|
if isEmptyMessageFieldValue(vx) && isEmptyMessageFieldValue(vy) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func isEmptyMessageFieldValue(v reflect.Value) bool {
|
|
if !v.IsValid() {
|
|
return true // implies missing slice element or map entry
|
|
}
|
|
v = v.Elem() // map entries are always populated values
|
|
switch t := v.Type(); {
|
|
case t == messageReflectType:
|
|
// Check singular field for empty message.
|
|
if !isEmptyMessage(v) {
|
|
return false
|
|
}
|
|
case t.Kind() == reflect.Slice && t.Elem() == messageReflectType:
|
|
// Check list field for all empty message elements.
|
|
for i := 0; i < v.Len(); i++ {
|
|
if !isEmptyMessage(v.Index(i)) {
|
|
return false
|
|
}
|
|
}
|
|
case t.Kind() == reflect.Map && t.Elem() == messageReflectType:
|
|
// Check map field for all empty message values.
|
|
for _, k := range v.MapKeys() {
|
|
if !isEmptyMessage(v.MapIndex(k)) {
|
|
return false
|
|
}
|
|
}
|
|
default:
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func isEmptyMessage(v reflect.Value) bool {
|
|
if !v.IsValid() {
|
|
return true // implies missing slice element or map entry
|
|
}
|
|
if !v.CanInterface() {
|
|
return false // implies unexported struct field
|
|
}
|
|
if m, ok := v.Interface().(Message); ok {
|
|
for k := range m {
|
|
if k != messageTypeKey && k != messageInvalidKey {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// IgnoreUnknown ignores unknown fields in all messages.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func IgnoreUnknown() cmp.Option {
|
|
return cmp.FilterPath(func(p cmp.Path) bool {
|
|
// Filter for Message maps.
|
|
mi, ok := p.Index(-1).(cmp.MapIndex)
|
|
if !ok {
|
|
return false
|
|
}
|
|
ps := p.Index(-2)
|
|
if ps.Type() != messageReflectType {
|
|
return false
|
|
}
|
|
|
|
// Filter for unknown fields (which always have a numeric map key).
|
|
return strings.Trim(mi.Key().String(), "0123456789") == ""
|
|
}, cmp.Ignore())
|
|
}
|
|
|
|
// SortRepeated sorts repeated fields of the specified element type.
|
|
// The less function must be of the form "func(T, T) bool" where T is the
|
|
// Go element type for the repeated field kind.
|
|
//
|
|
// The element type T can be one of the following:
|
|
// - Go type for a protobuf scalar kind except for an enum
|
|
// (i.e., bool, int32, int64, uint32, uint64, float32, float64, string, and []byte)
|
|
// - E where E is a concrete enum type that implements [protoreflect.Enum]
|
|
// - M where M is a concrete message type that implement [proto.Message]
|
|
//
|
|
// This option only applies to repeated fields within a protobuf message.
|
|
// It does not operate on higher-order Go types that seem like a repeated field.
|
|
// For example, a []T outside the context of a protobuf message will not be
|
|
// handled by this option. To sort Go slices that are not repeated fields,
|
|
// consider using [github.com/google/go-cmp/cmp/cmpopts.SortSlices] instead.
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func SortRepeated(lessFunc interface{}) cmp.Option {
|
|
t, ok := checkTTBFunc(lessFunc)
|
|
if !ok {
|
|
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
|
|
}
|
|
|
|
var opt cmp.Option
|
|
var sliceType reflect.Type
|
|
switch vf := reflect.ValueOf(lessFunc); {
|
|
case t.Implements(enumV2Type):
|
|
et := reflect.Zero(t).Interface().(protoreflect.Enum).Type()
|
|
lessFunc = func(x, y Enum) bool {
|
|
vx := reflect.ValueOf(et.New(x.Number()))
|
|
vy := reflect.ValueOf(et.New(y.Number()))
|
|
return vf.Call([]reflect.Value{vx, vy})[0].Bool()
|
|
}
|
|
opt = FilterDescriptor(et.Descriptor(), cmpopts.SortSlices(lessFunc))
|
|
sliceType = reflect.SliceOf(enumReflectType)
|
|
case t.Implements(messageV2Type):
|
|
mt := reflect.Zero(t).Interface().(protoreflect.ProtoMessage).ProtoReflect().Type()
|
|
lessFunc = func(x, y Message) bool {
|
|
mx := mt.New().Interface()
|
|
my := mt.New().Interface()
|
|
proto.Merge(mx, x)
|
|
proto.Merge(my, y)
|
|
vx := reflect.ValueOf(mx)
|
|
vy := reflect.ValueOf(my)
|
|
return vf.Call([]reflect.Value{vx, vy})[0].Bool()
|
|
}
|
|
opt = FilterDescriptor(mt.Descriptor(), cmpopts.SortSlices(lessFunc))
|
|
sliceType = reflect.SliceOf(messageReflectType)
|
|
default:
|
|
switch t {
|
|
case reflect.TypeOf(bool(false)):
|
|
case reflect.TypeOf(int32(0)):
|
|
case reflect.TypeOf(int64(0)):
|
|
case reflect.TypeOf(uint32(0)):
|
|
case reflect.TypeOf(uint64(0)):
|
|
case reflect.TypeOf(float32(0)):
|
|
case reflect.TypeOf(float64(0)):
|
|
case reflect.TypeOf(string("")):
|
|
case reflect.TypeOf([]byte(nil)):
|
|
default:
|
|
panic(fmt.Sprintf("invalid element type: %v", t))
|
|
}
|
|
opt = cmpopts.SortSlices(lessFunc)
|
|
sliceType = reflect.SliceOf(t)
|
|
}
|
|
|
|
return cmp.FilterPath(func(p cmp.Path) bool {
|
|
// Filter to only apply to repeated fields within a message.
|
|
if t := p.Index(-1).Type(); t == nil || t != sliceType {
|
|
return false
|
|
}
|
|
if t := p.Index(-2).Type(); t == nil || t.Kind() != reflect.Interface {
|
|
return false
|
|
}
|
|
if t := p.Index(-3).Type(); t == nil || t != messageReflectType {
|
|
return false
|
|
}
|
|
return true
|
|
}, opt)
|
|
}
|
|
|
|
func checkTTBFunc(lessFunc interface{}) (reflect.Type, bool) {
|
|
switch t := reflect.TypeOf(lessFunc); {
|
|
case t == nil:
|
|
return nil, false
|
|
case t.NumIn() != 2 || t.In(0) != t.In(1) || t.IsVariadic():
|
|
return nil, false
|
|
case t.NumOut() != 1 || t.Out(0) != reflect.TypeOf(false):
|
|
return nil, false
|
|
default:
|
|
return t.In(0), true
|
|
}
|
|
}
|
|
|
|
// SortRepeatedFields sorts the specified repeated fields.
|
|
// Sorting a repeated field is useful for treating the list as a multiset
|
|
// (i.e., a set where each value can appear multiple times).
|
|
// It panics if the field does not exist or is not a repeated field.
|
|
//
|
|
// The sort ordering is as follows:
|
|
// - Booleans are sorted where false is sorted before true.
|
|
// - Integers are sorted in ascending order.
|
|
// - Floating-point numbers are sorted in ascending order according to
|
|
// the total ordering defined by IEEE-754 (section 5.10).
|
|
// - Strings and bytes are sorted lexicographically in ascending order.
|
|
// - [Enum] values are sorted in ascending order based on its numeric value.
|
|
// - [Message] values are sorted according to some arbitrary ordering
|
|
// which is undefined and may change in future implementations.
|
|
//
|
|
// The ordering chosen for repeated messages is unlikely to be aesthetically
|
|
// preferred by humans. Consider using a custom sort function:
|
|
//
|
|
// FilterField(m, "foo_field", SortRepeated(func(x, y *foopb.MyMessage) bool {
|
|
// ... // user-provided definition for less
|
|
// }))
|
|
//
|
|
// This must be used in conjunction with [Transform].
|
|
func SortRepeatedFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
|
|
var opts cmp.Options
|
|
md := message.ProtoReflect().Descriptor()
|
|
for _, name := range names {
|
|
fd := mustFindFieldDescriptor(md, name)
|
|
if !fd.IsList() {
|
|
panic(fmt.Sprintf("message field %q is not repeated", fd.FullName()))
|
|
}
|
|
|
|
var lessFunc interface{}
|
|
switch fd.Kind() {
|
|
case protoreflect.BoolKind:
|
|
lessFunc = func(x, y bool) bool { return !x && y }
|
|
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
|
|
lessFunc = func(x, y int32) bool { return x < y }
|
|
case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
|
|
lessFunc = func(x, y int64) bool { return x < y }
|
|
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
|
|
lessFunc = func(x, y uint32) bool { return x < y }
|
|
case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
|
|
lessFunc = func(x, y uint64) bool { return x < y }
|
|
case protoreflect.FloatKind:
|
|
lessFunc = lessF32
|
|
case protoreflect.DoubleKind:
|
|
lessFunc = lessF64
|
|
case protoreflect.StringKind:
|
|
lessFunc = func(x, y string) bool { return x < y }
|
|
case protoreflect.BytesKind:
|
|
lessFunc = func(x, y []byte) bool { return bytes.Compare(x, y) < 0 }
|
|
case protoreflect.EnumKind:
|
|
lessFunc = func(x, y Enum) bool { return x.Number() < y.Number() }
|
|
case protoreflect.MessageKind, protoreflect.GroupKind:
|
|
lessFunc = func(x, y Message) bool { return x.String() < y.String() }
|
|
default:
|
|
panic(fmt.Sprintf("invalid kind: %v", fd.Kind()))
|
|
}
|
|
opts = append(opts, FilterDescriptor(fd, cmpopts.SortSlices(lessFunc)))
|
|
}
|
|
return opts
|
|
}
|
|
|
|
func lessF32(x, y float32) bool {
|
|
// Bit-wise implementation of IEEE-754, section 5.10.
|
|
xi := int32(math.Float32bits(x))
|
|
yi := int32(math.Float32bits(y))
|
|
xi ^= int32(uint32(xi>>31) >> 1)
|
|
yi ^= int32(uint32(yi>>31) >> 1)
|
|
return xi < yi
|
|
}
|
|
func lessF64(x, y float64) bool {
|
|
// Bit-wise implementation of IEEE-754, section 5.10.
|
|
xi := int64(math.Float64bits(x))
|
|
yi := int64(math.Float64bits(y))
|
|
xi ^= int64(uint64(xi>>63) >> 1)
|
|
yi ^= int64(uint64(yi>>63) >> 1)
|
|
return xi < yi
|
|
}
|