protobuf-go/internal/encoding/text/value.go
Herbie Ong 250c6eaf92 internal/encoding/text: change Value.Float{32,64} to Value.Float
Collapse Value.Float32 and Value.Float64 into single API to keep it
consistent with Value.{Int,Uint}.

Change-Id: I07737e72715fe3cc3f6bcad579cf5d6cfe3757d5
Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/167317
Reviewed-by: Joe Tsai <thebrokentoaster@gmail.com>
2019-03-13 04:35:13 +00:00

335 lines
9.5 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package text implements the text format for protocol buffers.
// This package has no semantic understanding for protocol buffers and is only
// a parser and composer for the format.
//
// There is no formal specification for the protobuf text format, as such the
// C++ implementation (see google::protobuf::TextFormat) is the reference
// implementation of the text format.
//
// This package is neither a superset nor a subset of the C++ implementation.
// This implementation permits a more liberal grammar in some cases to be
// backwards compatible with the historical Go implementation.
// Future parsings unique to Go should not be added.
// Some grammars allowed by the C++ implementation are deliberately
// not implemented here because they are considered a bug by the protobuf team
// and should not be replicated.
//
// The Go implementation should implement a sufficient amount of the C++
// grammar such that the default text serialization by C++ can be parsed by Go.
// However, just because the C++ parser accepts some input does not mean that
// the Go implementation should as well.
//
// The text format is almost a superset of JSON except:
// * message keys are not quoted strings, but identifiers
// * the top-level value must be a message without the delimiters
package text
import (
"fmt"
"math"
"strings"
"github.com/golang/protobuf/v2/internal/flags"
"github.com/golang/protobuf/v2/reflect/protoreflect"
)
// Type represents a type expressible in the text format.
type Type uint8
const (
_ Type = iota
// Bool is a boolean (e.g., "true" or "false").
Bool
// Int is a signed integer (e.g., "-1423").
Int
// Uint is an unsigned integer (e.g., "0xdeadbeef").
Uint
// Float32 is a 32-bit floating-point number (e.g., "1.234" or "1e38").
// This allows encoding to differentiate the bitsize used for formatting.
Float32
// Float64 is a 64-bit floating-point number.
Float64
// String is a quoted string (e.g., `"the quick brown fox"`).
String
// Name is a protocol buffer identifier (e.g., `field_name`).
Name
// List is an ordered list of values (e.g., `[0, "one", true]`).
List
// Message is an ordered map of values (e.g., `{"key": null}`).
Message
)
func (t Type) String() string {
switch t {
case Bool:
return "bool"
case Int:
return "int"
case Uint:
return "uint"
case Float32:
return "float32"
case Float64:
return "float64"
case String:
return "string"
case Name:
return "name"
case List:
return "list"
case Message:
return "message"
default:
return "<invalid>"
}
}
// Value contains a value of a given Type.
type Value struct {
typ Type
raw []byte // raw bytes of the serialized data
str string // only for String or Name
num uint64 // only for Bool, Int, Uint, Float32, or Float64
arr []Value // only for List
obj [][2]Value // only for Message
}
// ValueOf returns a Value for a given Go value:
// bool => Bool
// int32, int64 => Int
// uint32, uint64 => Uint
// float32 => Float32
// float64 => Float64
// string, []byte => String
// protoreflect.Name => Name
// []Value => List
// [][2]Value => Message
//
// ValueOf panics if the Go type is not one of the above.
func ValueOf(v interface{}) Value {
switch v := v.(type) {
case bool:
if v {
return Value{typ: Bool, num: 1}
} else {
return Value{typ: Bool, num: 0}
}
case int32:
return Value{typ: Int, num: uint64(v)}
case int64:
return Value{typ: Int, num: uint64(v)}
case uint32:
return Value{typ: Uint, num: uint64(v)}
case uint64:
return Value{typ: Uint, num: uint64(v)}
case float32:
// Store as float64 bits.
return Value{typ: Float32, num: math.Float64bits(float64(v))}
case float64:
return Value{typ: Float64, num: math.Float64bits(float64(v))}
case string:
return Value{typ: String, str: string(v)}
case []byte:
return Value{typ: String, str: string(v)}
case protoreflect.Name:
return Value{typ: Name, str: string(v)}
case []Value:
return Value{typ: List, arr: v}
case [][2]Value:
return Value{typ: Message, obj: v}
default:
panic(fmt.Sprintf("invalid type %T", v))
}
}
func rawValueOf(v interface{}, raw []byte) Value {
v2 := ValueOf(v)
v2.raw = raw
return v2
}
// Type is the type of the value. When parsing, this is a best-effort guess
// at the resulting type. However, there are ambiguities as to the exact type
// of the value (e.g., "false" is either a bool or a name).
// Thus, some of the types are convertible with each other.
// The Bool, Int, Uint, Float32, Float64, and Name methods return a boolean to
// report whether the conversion was successful.
func (v Value) Type() Type {
return v.typ
}
// Bool returns v as a bool and reports whether the conversion succeeded.
func (v Value) Bool() (x bool, ok bool) {
switch v.typ {
case Bool:
return v.num > 0, true
case Uint, Int:
// C++ allows a 1-bit unsigned integer (e.g., "0", "1", or "0x1").
if len(v.raw) > 0 && v.raw[0] != '-' && v.num < 2 {
return v.num > 0, true
}
}
return false, false
}
// Int returns v as an int64 of the specified precision and reports whether
// the conversion succeeded.
func (v Value) Int(b64 bool) (x int64, ok bool) {
switch v.typ {
case Int:
n := int64(v.num)
if b64 || (math.MinInt32 <= n && n <= math.MaxInt32) {
return int64(n), true
}
case Uint:
n := uint64(v.num)
if (!b64 && n <= math.MaxInt32) || (b64 && n <= math.MaxInt64) {
return int64(n), true
}
// C++ accepts large positive hex numbers as negative values.
// This feature is here for proto1 backwards compatibility purposes.
if flags.Proto1Legacy && len(v.raw) > 1 && v.raw[0] == '0' && v.raw[1] == 'x' {
if !b64 {
return int64(int32(n)), n <= math.MaxUint32
}
// if !b64 && n <= math.MaxUint32 {
// return int64(int32(n)), true
// }
return int64(n), true
}
}
return 0, false
}
// Uint returns v as an uint64 of the specified precision and reports whether
// the conversion succeeded.
func (v Value) Uint(b64 bool) (x uint64, ok bool) {
switch v.typ {
case Int:
n := int64(v.num)
if len(v.raw) > 0 && v.raw[0] != '-' && (b64 || n <= math.MaxUint32) {
return uint64(n), true
}
case Uint:
n := uint64(v.num)
if b64 || n <= math.MaxUint32 {
return uint64(n), true
}
}
return 0, false
}
// Float returns v as a float64 of the specified precision and reports whether
// the conversion succeeded.
func (v Value) Float(b64 bool) (x float64, ok bool) {
switch v.typ {
case Int:
return float64(int64(v.num)), true // possibly lossy, but allowed
case Uint:
return float64(uint64(v.num)), true // possibly lossy, but allowed
case Float32, Float64:
n := math.Float64frombits(v.num)
if math.IsNaN(n) || math.IsInf(n, 0) {
return float64(n), true
}
if b64 || math.Abs(n) <= math.MaxFloat32 {
return float64(n), true
}
}
return 0, false
}
// String returns v as a string if the Type is String.
// Otherwise, this returns a formatted string of v for debugging purposes.
//
// Since String is used to represent both text and binary, it is not validated
// to contain valid UTF-8. When using this value with the string type in proto,
// it is the user's responsibility perform additional UTF-8 validation.
func (v Value) String() string {
if v.typ != String {
return v.stringValue()
}
return v.str
}
func (v Value) stringValue() string {
switch v.typ {
case Bool, Int, Uint, Float32, Float64, Name:
return string(v.Raw())
case List:
var ss []string
for _, v := range v.List() {
ss = append(ss, v.String())
}
return "[" + strings.Join(ss, ",") + "]"
case Message:
var ss []string
for _, v := range v.Message() {
k := v[0].String()
if v[0].Type() == String {
k = "[" + k + "]"
}
ss = append(ss, k+":"+v[1].String())
}
return "{" + strings.Join(ss, ",") + "}"
default:
return "<invalid>"
}
}
// Name returns the field name or enum value name and reports whether the value
// can be treated as an identifier.
func (v Value) Name() (protoreflect.Name, bool) {
switch v.typ {
case Bool, Float32, Float64:
// Ambiguity arises in unmarshalValue since "nan" may interpreted as
// either a Name type (for enum values) or a Float32/Float64 type.
// Similarly, "true" may be interpreted as either a Name or Bool type.
n := protoreflect.Name(v.raw)
if n.IsValid() {
return n, true
}
case Name:
return protoreflect.Name(v.str), true
}
return "", false
}
// List returns the elements of v and panics if the Type is not List.
// Mutations on the return value may not be observable from the Raw method.
func (v Value) List() []Value {
if v.typ != List {
panic("value is not a list")
}
return v.arr
}
// Message returns the items of v and panics if the Type is not Message.
// The [2]Value represents a key and value pair, where the key is either
// a Name (representing a field name), a String (representing extension field
// names or the Any type URL), or an Uint for unknown fields.
//
// Mutations on the return value may not be observable from the Raw method.
func (v Value) Message() [][2]Value {
if v.typ != Message {
panic("value is not a message")
}
return v.obj
}
// Raw returns the raw representation of the value.
// The returned value may alias the input given to Unmarshal.
func (v Value) Raw() []byte {
if len(v.raw) > 0 {
return v.raw
}
p := encoder{}
if err := p.marshalValue(v); !p.nerr.Merge(err) {
return []byte("<invalid>")
}
return p.out
}