mirror of
https://github.com/protocolbuffers/protobuf-go.git
synced 2025-02-21 09:40:03 +00:00
In the upcoming 3.12.x release of protoc, the proto3 language will be amended to support true presence for scalars. This CL adds support to both the generator and runtime to support these semantics. Newly added public API: protogen.Plugin.SupportedFeatures protoreflect.FieldDescriptor.HasPresence protoreflect.FieldDescriptor.HasOptionalKeyword protoreflect.OneofDescriptor.IsSynthetic Change-Id: I7c86bf66d0ae56642109beb5f2132184593747ad Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/230698 Reviewed-by: Damien Neil <dneil@google.com>
362 lines
10 KiB
Go
362 lines
10 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package impl
|
|
|
|
import (
|
|
"fmt"
|
|
"reflect"
|
|
|
|
"google.golang.org/protobuf/internal/pragma"
|
|
pref "google.golang.org/protobuf/reflect/protoreflect"
|
|
)
|
|
|
|
type reflectMessageInfo struct {
|
|
fields map[pref.FieldNumber]*fieldInfo
|
|
oneofs map[pref.Name]*oneofInfo
|
|
|
|
// denseFields is a subset of fields where:
|
|
// 0 < fieldDesc.Number() < len(denseFields)
|
|
// It provides faster access to the fieldInfo, but may be incomplete.
|
|
denseFields []*fieldInfo
|
|
|
|
// rangeInfos is a list of all fields (not belonging to a oneof) and oneofs.
|
|
rangeInfos []interface{} // either *fieldInfo or *oneofInfo
|
|
|
|
getUnknown func(pointer) pref.RawFields
|
|
setUnknown func(pointer, pref.RawFields)
|
|
extensionMap func(pointer) *extensionMap
|
|
|
|
nilMessage atomicNilMessage
|
|
}
|
|
|
|
// makeReflectFuncs generates the set of functions to support reflection.
|
|
func (mi *MessageInfo) makeReflectFuncs(t reflect.Type, si structInfo) {
|
|
mi.makeKnownFieldsFunc(si)
|
|
mi.makeUnknownFieldsFunc(t, si)
|
|
mi.makeExtensionFieldsFunc(t, si)
|
|
}
|
|
|
|
// makeKnownFieldsFunc generates functions for operations that can be performed
|
|
// on each protobuf message field. It takes in a reflect.Type representing the
|
|
// Go struct and matches message fields with struct fields.
|
|
//
|
|
// This code assumes that the struct is well-formed and panics if there are
|
|
// any discrepancies.
|
|
func (mi *MessageInfo) makeKnownFieldsFunc(si structInfo) {
|
|
mi.fields = map[pref.FieldNumber]*fieldInfo{}
|
|
md := mi.Desc
|
|
fds := md.Fields()
|
|
for i := 0; i < fds.Len(); i++ {
|
|
fd := fds.Get(i)
|
|
fs := si.fieldsByNumber[fd.Number()]
|
|
var fi fieldInfo
|
|
switch {
|
|
case fd.ContainingOneof() != nil && !fd.ContainingOneof().IsSynthetic():
|
|
fi = fieldInfoForOneof(fd, si.oneofsByName[fd.ContainingOneof().Name()], mi.Exporter, si.oneofWrappersByNumber[fd.Number()])
|
|
case fd.IsMap():
|
|
fi = fieldInfoForMap(fd, fs, mi.Exporter)
|
|
case fd.IsList():
|
|
fi = fieldInfoForList(fd, fs, mi.Exporter)
|
|
case fd.IsWeak():
|
|
fi = fieldInfoForWeakMessage(fd, si.weakOffset)
|
|
case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind:
|
|
fi = fieldInfoForMessage(fd, fs, mi.Exporter)
|
|
default:
|
|
fi = fieldInfoForScalar(fd, fs, mi.Exporter)
|
|
}
|
|
mi.fields[fd.Number()] = &fi
|
|
}
|
|
|
|
mi.oneofs = map[pref.Name]*oneofInfo{}
|
|
for i := 0; i < md.Oneofs().Len(); i++ {
|
|
od := md.Oneofs().Get(i)
|
|
mi.oneofs[od.Name()] = makeOneofInfo(od, si, mi.Exporter)
|
|
}
|
|
|
|
mi.denseFields = make([]*fieldInfo, fds.Len()*2)
|
|
for i := 0; i < fds.Len(); i++ {
|
|
if fd := fds.Get(i); int(fd.Number()) < len(mi.denseFields) {
|
|
mi.denseFields[fd.Number()] = mi.fields[fd.Number()]
|
|
}
|
|
}
|
|
|
|
for i := 0; i < fds.Len(); {
|
|
fd := fds.Get(i)
|
|
if od := fd.ContainingOneof(); od != nil && !od.IsSynthetic() {
|
|
mi.rangeInfos = append(mi.rangeInfos, mi.oneofs[od.Name()])
|
|
i += od.Fields().Len()
|
|
} else {
|
|
mi.rangeInfos = append(mi.rangeInfos, mi.fields[fd.Number()])
|
|
i++
|
|
}
|
|
}
|
|
}
|
|
|
|
func (mi *MessageInfo) makeUnknownFieldsFunc(t reflect.Type, si structInfo) {
|
|
mi.getUnknown = func(pointer) pref.RawFields { return nil }
|
|
mi.setUnknown = func(pointer, pref.RawFields) { return }
|
|
if si.unknownOffset.IsValid() {
|
|
mi.getUnknown = func(p pointer) pref.RawFields {
|
|
if p.IsNil() {
|
|
return nil
|
|
}
|
|
rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType)
|
|
return pref.RawFields(*rv.Interface().(*[]byte))
|
|
}
|
|
mi.setUnknown = func(p pointer, b pref.RawFields) {
|
|
if p.IsNil() {
|
|
panic("invalid SetUnknown on nil Message")
|
|
}
|
|
rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType)
|
|
*rv.Interface().(*[]byte) = []byte(b)
|
|
}
|
|
} else {
|
|
mi.getUnknown = func(pointer) pref.RawFields {
|
|
return nil
|
|
}
|
|
mi.setUnknown = func(p pointer, _ pref.RawFields) {
|
|
if p.IsNil() {
|
|
panic("invalid SetUnknown on nil Message")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (mi *MessageInfo) makeExtensionFieldsFunc(t reflect.Type, si structInfo) {
|
|
if si.extensionOffset.IsValid() {
|
|
mi.extensionMap = func(p pointer) *extensionMap {
|
|
if p.IsNil() {
|
|
return (*extensionMap)(nil)
|
|
}
|
|
v := p.Apply(si.extensionOffset).AsValueOf(extensionFieldsType)
|
|
return (*extensionMap)(v.Interface().(*map[int32]ExtensionField))
|
|
}
|
|
} else {
|
|
mi.extensionMap = func(pointer) *extensionMap {
|
|
return (*extensionMap)(nil)
|
|
}
|
|
}
|
|
}
|
|
|
|
type extensionMap map[int32]ExtensionField
|
|
|
|
func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
|
|
if m != nil {
|
|
for _, x := range *m {
|
|
xd := x.Type().TypeDescriptor()
|
|
v := x.Value()
|
|
if xd.IsList() && v.List().Len() == 0 {
|
|
continue
|
|
}
|
|
if !f(xd, v) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) {
|
|
if m == nil {
|
|
return false
|
|
}
|
|
xd := xt.TypeDescriptor()
|
|
x, ok := (*m)[int32(xd.Number())]
|
|
if !ok {
|
|
return false
|
|
}
|
|
switch {
|
|
case xd.IsList():
|
|
return x.Value().List().Len() > 0
|
|
case xd.IsMap():
|
|
return x.Value().Map().Len() > 0
|
|
case xd.Message() != nil:
|
|
return x.Value().Message().IsValid()
|
|
}
|
|
return true
|
|
}
|
|
func (m *extensionMap) Clear(xt pref.ExtensionType) {
|
|
delete(*m, int32(xt.TypeDescriptor().Number()))
|
|
}
|
|
func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value {
|
|
xd := xt.TypeDescriptor()
|
|
if m != nil {
|
|
if x, ok := (*m)[int32(xd.Number())]; ok {
|
|
return x.Value()
|
|
}
|
|
}
|
|
return xt.Zero()
|
|
}
|
|
func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) {
|
|
xd := xt.TypeDescriptor()
|
|
isValid := true
|
|
switch {
|
|
case !xt.IsValidValue(v):
|
|
isValid = false
|
|
case xd.IsList():
|
|
isValid = v.List().IsValid()
|
|
case xd.IsMap():
|
|
isValid = v.Map().IsValid()
|
|
case xd.Message() != nil:
|
|
isValid = v.Message().IsValid()
|
|
}
|
|
if !isValid {
|
|
panic(fmt.Sprintf("%v: assigning invalid value", xt.TypeDescriptor().FullName()))
|
|
}
|
|
|
|
if *m == nil {
|
|
*m = make(map[int32]ExtensionField)
|
|
}
|
|
var x ExtensionField
|
|
x.Set(xt, v)
|
|
(*m)[int32(xd.Number())] = x
|
|
}
|
|
func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value {
|
|
xd := xt.TypeDescriptor()
|
|
if xd.Kind() != pref.MessageKind && xd.Kind() != pref.GroupKind && !xd.IsList() && !xd.IsMap() {
|
|
panic("invalid Mutable on field with non-composite type")
|
|
}
|
|
if x, ok := (*m)[int32(xd.Number())]; ok {
|
|
return x.Value()
|
|
}
|
|
v := xt.New()
|
|
m.Set(xt, v)
|
|
return v
|
|
}
|
|
|
|
// MessageState is a data structure that is nested as the first field in a
|
|
// concrete message. It provides a way to implement the ProtoReflect method
|
|
// in an allocation-free way without needing to have a shadow Go type generated
|
|
// for every message type. This technique only works using unsafe.
|
|
//
|
|
//
|
|
// Example generated code:
|
|
//
|
|
// type M struct {
|
|
// state protoimpl.MessageState
|
|
//
|
|
// Field1 int32
|
|
// Field2 string
|
|
// Field3 *BarMessage
|
|
// ...
|
|
// }
|
|
//
|
|
// func (m *M) ProtoReflect() protoreflect.Message {
|
|
// mi := &file_fizz_buzz_proto_msgInfos[5]
|
|
// if protoimpl.UnsafeEnabled && m != nil {
|
|
// ms := protoimpl.X.MessageStateOf(Pointer(m))
|
|
// if ms.LoadMessageInfo() == nil {
|
|
// ms.StoreMessageInfo(mi)
|
|
// }
|
|
// return ms
|
|
// }
|
|
// return mi.MessageOf(m)
|
|
// }
|
|
//
|
|
// The MessageState type holds a *MessageInfo, which must be atomically set to
|
|
// the message info associated with a given message instance.
|
|
// By unsafely converting a *M into a *MessageState, the MessageState object
|
|
// has access to all the information needed to implement protobuf reflection.
|
|
// It has access to the message info as its first field, and a pointer to the
|
|
// MessageState is identical to a pointer to the concrete message value.
|
|
//
|
|
//
|
|
// Requirements:
|
|
// • The type M must implement protoreflect.ProtoMessage.
|
|
// • The address of m must not be nil.
|
|
// • The address of m and the address of m.state must be equal,
|
|
// even though they are different Go types.
|
|
type MessageState struct {
|
|
pragma.NoUnkeyedLiterals
|
|
pragma.DoNotCompare
|
|
pragma.DoNotCopy
|
|
|
|
atomicMessageInfo *MessageInfo
|
|
}
|
|
|
|
type messageState MessageState
|
|
|
|
var (
|
|
_ pref.Message = (*messageState)(nil)
|
|
_ unwrapper = (*messageState)(nil)
|
|
)
|
|
|
|
// messageDataType is a tuple of a pointer to the message data and
|
|
// a pointer to the message type. It is a generalized way of providing a
|
|
// reflective view over a message instance. The disadvantage of this approach
|
|
// is the need to allocate this tuple of 16B.
|
|
type messageDataType struct {
|
|
p pointer
|
|
mi *MessageInfo
|
|
}
|
|
|
|
type (
|
|
messageReflectWrapper messageDataType
|
|
messageIfaceWrapper messageDataType
|
|
)
|
|
|
|
var (
|
|
_ pref.Message = (*messageReflectWrapper)(nil)
|
|
_ unwrapper = (*messageReflectWrapper)(nil)
|
|
_ pref.ProtoMessage = (*messageIfaceWrapper)(nil)
|
|
_ unwrapper = (*messageIfaceWrapper)(nil)
|
|
)
|
|
|
|
// MessageOf returns a reflective view over a message. The input must be a
|
|
// pointer to a named Go struct. If the provided type has a ProtoReflect method,
|
|
// it must be implemented by calling this method.
|
|
func (mi *MessageInfo) MessageOf(m interface{}) pref.Message {
|
|
// TODO: Switch the input to be an opaque Pointer.
|
|
if reflect.TypeOf(m) != mi.GoReflectType {
|
|
panic(fmt.Sprintf("type mismatch: got %T, want %v", m, mi.GoReflectType))
|
|
}
|
|
p := pointerOfIface(m)
|
|
if p.IsNil() {
|
|
return mi.nilMessage.Init(mi)
|
|
}
|
|
return &messageReflectWrapper{p, mi}
|
|
}
|
|
|
|
func (m *messageReflectWrapper) pointer() pointer { return m.p }
|
|
func (m *messageReflectWrapper) messageInfo() *MessageInfo { return m.mi }
|
|
|
|
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
|
|
return (*messageReflectWrapper)(m)
|
|
}
|
|
func (m *messageIfaceWrapper) protoUnwrap() interface{} {
|
|
return m.p.AsIfaceOf(m.mi.GoReflectType.Elem())
|
|
}
|
|
|
|
// checkField verifies that the provided field descriptor is valid.
|
|
// Exactly one of the returned values is populated.
|
|
func (mi *MessageInfo) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) {
|
|
var fi *fieldInfo
|
|
if n := fd.Number(); 0 < n && int(n) < len(mi.denseFields) {
|
|
fi = mi.denseFields[n]
|
|
} else {
|
|
fi = mi.fields[n]
|
|
}
|
|
if fi != nil {
|
|
if fi.fieldDesc != fd {
|
|
panic("mismatching field descriptor")
|
|
}
|
|
return fi, nil
|
|
}
|
|
|
|
if fd.IsExtension() {
|
|
if fd.ContainingMessage().FullName() != mi.Desc.FullName() {
|
|
// TODO: Should this be exact containing message descriptor match?
|
|
panic("mismatching containing message")
|
|
}
|
|
if !mi.Desc.ExtensionRanges().Has(fd.Number()) {
|
|
panic("invalid extension field")
|
|
}
|
|
xtd, ok := fd.(pref.ExtensionTypeDescriptor)
|
|
if !ok {
|
|
panic("extension descriptor does not implement ExtensionTypeDescriptor")
|
|
}
|
|
return nil, xtd.Type()
|
|
}
|
|
panic("invalid field descriptor")
|
|
}
|