mirror of
https://github.com/protocolbuffers/protobuf-go.git
synced 2025-01-29 00:32:43 +00:00
2aea614c5e
The messageState.mi field is atomically checked and set in generated code to the *MessageInfo associated with that message. However, the messageState type accesses the mi field without any atomic loads, thus being a potential race. We fix this by always calling a messageInfo method that performs a atomic.LoadPointer on the *MessageInfo. There is no performance effect from this change on x86 since an atomic.LoadPointer is identical to a MOV instruction. From an assembly perspective, there was no memory race previously. However, the lack of an atomic.LoadPointer meant that the compiler could in theory reorder the "normal" load to produce truly racy code. Change-Id: I8afefaf35c1916872781abc0239cbb63d62edf16 Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/189017 Reviewed-by: Damien Neil <dneil@google.com>
197 lines
5.6 KiB
Go
197 lines
5.6 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package impl
|
|
|
|
import (
|
|
"fmt"
|
|
"reflect"
|
|
|
|
"google.golang.org/protobuf/internal/pragma"
|
|
pvalue "google.golang.org/protobuf/internal/value"
|
|
pref "google.golang.org/protobuf/reflect/protoreflect"
|
|
)
|
|
|
|
// MessageState is a data structure that is nested as the first field in a
|
|
// concrete message. It provides a way to implement the ProtoReflect method
|
|
// in an allocation-free way without needing to have a shadow Go type generated
|
|
// for every message type. This technique only works using unsafe.
|
|
//
|
|
//
|
|
// Example generated code:
|
|
//
|
|
// type M struct {
|
|
// state protoimpl.MessageState
|
|
//
|
|
// Field1 int32
|
|
// Field2 string
|
|
// Field3 *BarMessage
|
|
// ...
|
|
// }
|
|
//
|
|
// func (m *M) ProtoReflect() protoreflect.Message {
|
|
// mi := &file_fizz_buzz_proto_msgInfos[5]
|
|
// if protoimpl.UnsafeEnabled && m != nil {
|
|
// ms := protoimpl.X.MessageStateOf(Pointer(m))
|
|
// if ms.LoadMessageInfo() == nil {
|
|
// ms.StoreMessageInfo(mi)
|
|
// }
|
|
// return ms
|
|
// }
|
|
// return mi.MessageOf(m)
|
|
// }
|
|
//
|
|
// The MessageState type holds a *MessageInfo, which must be atomically set to
|
|
// the message info associated with a given message instance.
|
|
// By unsafely converting a *M into a *MessageState, the MessageState object
|
|
// has access to all the information needed to implement protobuf reflection.
|
|
// It has access to the message info as its first field, and a pointer to the
|
|
// MessageState is identical to a pointer to the concrete message value.
|
|
//
|
|
//
|
|
// Requirements:
|
|
// • The type M must implement protoreflect.ProtoMessage.
|
|
// • The address of m must not be nil.
|
|
// • The address of m and the address of m.state must be equal,
|
|
// even though they are different Go types.
|
|
type MessageState struct {
|
|
pragma.NoUnkeyedLiterals
|
|
pragma.DoNotCompare
|
|
pragma.DoNotCopy
|
|
|
|
mi *MessageInfo
|
|
}
|
|
|
|
type messageState MessageState
|
|
|
|
var (
|
|
_ pref.Message = (*messageState)(nil)
|
|
_ pvalue.Unwrapper = (*messageState)(nil)
|
|
)
|
|
|
|
// messageDataType is a tuple of a pointer to the message data and
|
|
// a pointer to the message type. It is a generalized way of providing a
|
|
// reflective view over a message instance. The disadvantage of this approach
|
|
// is the need to allocate this tuple of 16B.
|
|
type messageDataType struct {
|
|
p pointer
|
|
mi *MessageInfo
|
|
}
|
|
|
|
type (
|
|
messageReflectWrapper messageDataType
|
|
messageIfaceWrapper messageDataType
|
|
)
|
|
|
|
var (
|
|
_ pref.Message = (*messageReflectWrapper)(nil)
|
|
_ pvalue.Unwrapper = (*messageReflectWrapper)(nil)
|
|
_ pref.ProtoMessage = (*messageIfaceWrapper)(nil)
|
|
_ pvalue.Unwrapper = (*messageIfaceWrapper)(nil)
|
|
)
|
|
|
|
// MessageOf returns a reflective view over a message. The input must be a
|
|
// pointer to a named Go struct. If the provided type has a ProtoReflect method,
|
|
// it must be implemented by calling this method.
|
|
func (mi *MessageInfo) MessageOf(m interface{}) pref.Message {
|
|
// TODO: Switch the input to be an opaque Pointer.
|
|
if reflect.TypeOf(m) != mi.GoType {
|
|
panic(fmt.Sprintf("type mismatch: got %T, want %v", m, mi.GoType))
|
|
}
|
|
p := pointerOfIface(m)
|
|
if p.IsNil() {
|
|
return mi.nilMessage.Init(mi)
|
|
}
|
|
return &messageReflectWrapper{p, mi}
|
|
}
|
|
|
|
func (m *messageReflectWrapper) pointer() pointer { return m.p }
|
|
func (m *messageReflectWrapper) messageInfo() *MessageInfo { return m.mi }
|
|
|
|
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
|
|
return (*messageReflectWrapper)(m)
|
|
}
|
|
func (m *messageIfaceWrapper) ProtoUnwrap() interface{} {
|
|
return m.p.AsIfaceOf(m.mi.GoType.Elem())
|
|
}
|
|
|
|
type extensionMap map[int32]ExtensionField
|
|
|
|
func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
|
|
if m != nil {
|
|
for _, x := range *m {
|
|
xt := x.GetType()
|
|
if !f(xt, xt.ValueOf(x.GetValue())) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) {
|
|
if m != nil {
|
|
_, ok = (*m)[int32(xt.Number())]
|
|
}
|
|
return ok
|
|
}
|
|
func (m *extensionMap) Clear(xt pref.ExtensionType) {
|
|
delete(*m, int32(xt.Number()))
|
|
}
|
|
func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value {
|
|
if m != nil {
|
|
if x, ok := (*m)[int32(xt.Number())]; ok {
|
|
return xt.ValueOf(x.GetValue())
|
|
}
|
|
}
|
|
if !isComposite(xt) {
|
|
return defaultValueOf(xt)
|
|
}
|
|
return frozenValueOf(xt.New())
|
|
}
|
|
func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) {
|
|
if *m == nil {
|
|
*m = make(map[int32]ExtensionField)
|
|
}
|
|
var x ExtensionField
|
|
x.SetType(xt)
|
|
x.SetEagerValue(xt.InterfaceOf(v))
|
|
(*m)[int32(xt.Number())] = x
|
|
}
|
|
func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value {
|
|
if !isComposite(xt) {
|
|
panic("invalid Mutable on field with non-composite type")
|
|
}
|
|
if x, ok := (*m)[int32(xt.Number())]; ok {
|
|
return xt.ValueOf(x.GetValue())
|
|
}
|
|
v := xt.New()
|
|
m.Set(xt, v)
|
|
return v
|
|
}
|
|
|
|
func isComposite(fd pref.FieldDescriptor) bool {
|
|
return fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind || fd.IsList() || fd.IsMap()
|
|
}
|
|
|
|
// checkField verifies that the provided field descriptor is valid.
|
|
// Exactly one of the returned values is populated.
|
|
func (mi *MessageInfo) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) {
|
|
if fi := mi.fields[fd.Number()]; fi != nil {
|
|
if fi.fieldDesc != fd {
|
|
panic("mismatching field descriptor")
|
|
}
|
|
return fi, nil
|
|
}
|
|
if fd.IsExtension() {
|
|
if fd.ContainingMessage().FullName() != mi.PBType.FullName() {
|
|
// TODO: Should this be exact containing message descriptor match?
|
|
panic("mismatching containing message")
|
|
}
|
|
if !mi.PBType.ExtensionRanges().Has(fd.Number()) {
|
|
panic("invalid extension field")
|
|
}
|
|
return nil, fd.(pref.ExtensionType)
|
|
}
|
|
panic("invalid field descriptor")
|
|
}
|