protobuf-go/reflect/protoreflect/value_test.go
Joe Tsai 812d9137df reflect/protoreflect: add Has and Clear to KnownFields and Map
Change the API to use explicit Has/Clear methods instead of relying on the
"invalid" form of Value to represent nullability.

There are several reasons for this change:

* Much of the ecosystem around protobufs do not care about nullability alone.
For example, for the encoder to determine whether to emit a field:
it needs to first check if a field is nulled, and if not, it still needs to go
through a series of type-assertion to check whether the value is the zero value.
It is much easier to be able to just call Has.

* It enables representing the default value as part of the value API, rather
than only as part of the descriptor API.

* The C++ API also uses explicit has and clear methods. However, we differ from
them by defining Has for proto3 scalars (while C++ panics instead).

For internal consistency, we also use a Has/Clear API for Maps.

Change-Id: I30eda482c959d3e1454d72d9fc761c761ace27a6
Reviewed-on: https://go-review.googlesource.com/134998
Reviewed-by: Damien Neil <dneil@google.com>
2018-09-13 19:52:11 +00:00

148 lines
4.4 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
import (
"bytes"
"math"
"reflect"
"testing"
)
func TestValue(t *testing.T) {
fakeMessage := new(struct{ Message })
fakeVector := new(struct{ Vector })
fakeMap := new(struct{ Map })
tests := []struct {
in Value
want interface{}
}{
{in: Value{}},
{in: ValueOf(nil)},
{in: ValueOf(true), want: true},
{in: ValueOf(int32(math.MaxInt32)), want: int32(math.MaxInt32)},
{in: ValueOf(int64(math.MaxInt64)), want: int64(math.MaxInt64)},
{in: ValueOf(uint32(math.MaxUint32)), want: uint32(math.MaxUint32)},
{in: ValueOf(uint64(math.MaxUint64)), want: uint64(math.MaxUint64)},
{in: ValueOf(float32(math.MaxFloat32)), want: float32(math.MaxFloat32)},
{in: ValueOf(float64(math.MaxFloat64)), want: float64(math.MaxFloat64)},
{in: ValueOf(string("hello")), want: string("hello")},
{in: ValueOf([]byte("hello")), want: []byte("hello")},
{in: ValueOf(fakeMessage), want: fakeMessage},
{in: ValueOf(fakeVector), want: fakeVector},
{in: ValueOf(fakeMap), want: fakeMap},
}
for _, tt := range tests {
got := tt.in.Interface()
if !reflect.DeepEqual(got, tt.want) {
t.Errorf("Value(%v).Interface() = %v, want %v", tt.in, got, tt.want)
}
if got := tt.in.IsValid(); got != (tt.want != nil) {
t.Errorf("Value(%v).IsValid() = %v, want %v", tt.in, got, tt.want != nil)
}
switch want := tt.want.(type) {
case int32:
if got := tt.in.Int(); got != int64(want) {
t.Errorf("Value(%v).Int() = %v, want %v", tt.in, got, tt.want)
}
case int64:
if got := tt.in.Int(); got != int64(want) {
t.Errorf("Value(%v).Int() = %v, want %v", tt.in, got, tt.want)
}
case uint32:
if got := tt.in.Uint(); got != uint64(want) {
t.Errorf("Value(%v).Uint() = %v, want %v", tt.in, got, tt.want)
}
case uint64:
if got := tt.in.Uint(); got != uint64(want) {
t.Errorf("Value(%v).Uint() = %v, want %v", tt.in, got, tt.want)
}
case float32:
if got := tt.in.Float(); got != float64(want) {
t.Errorf("Value(%v).Float() = %v, want %v", tt.in, got, tt.want)
}
case float64:
if got := tt.in.Float(); got != float64(want) {
t.Errorf("Value(%v).Float() = %v, want %v", tt.in, got, tt.want)
}
case string:
if got := tt.in.String(); got != string(want) {
t.Errorf("Value(%v).String() = %v, want %v", tt.in, got, tt.want)
}
case []byte:
if got := tt.in.Bytes(); !bytes.Equal(got, want) {
t.Errorf("Value(%v).Bytes() = %v, want %v", tt.in, got, tt.want)
}
case EnumNumber:
if got := tt.in.Enum(); got != want {
t.Errorf("Value(%v).Enum() = %v, want %v", tt.in, got, tt.want)
}
case Message:
if got := tt.in.Message(); got != want {
t.Errorf("Value(%v).Message() = %v, want %v", tt.in, got, tt.want)
}
case Map:
if got := tt.in.Map(); got != want {
t.Errorf("Value(%v).Map() = %v, want %v", tt.in, got, tt.want)
}
case Vector:
if got := tt.in.Vector(); got != want {
t.Errorf("Value(%v).Vector() = %v, want %v", tt.in, got, tt.want)
}
}
}
}
func BenchmarkValue(b *testing.B) {
const testdata = "The quick brown fox jumped over the lazy dog."
var sink1 string
var sink2 Value
var sink3 interface{}
// Baseline measures the time to store a string into a native variable.
b.Run("Baseline", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
sink1 = testdata[:len(testdata)%(i+1)]
}
})
// Inline measures the time to store a string into a Value,
// assuming that the compiler could inline the ValueOf function call.
b.Run("Inline", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
sink2 = valueOfString(testdata[:len(testdata)%(i+1)])
}
})
// Value measures the time to store a string into a Value using the general
// ValueOf function call. This should be identical to Inline.
//
// NOTE: As of Go1.11, this is not as efficient as Inline due to the lack
// of some compiler optimizations:
// https://golang.org/issue/22310
// https://golang.org/issue/25189
b.Run("Value", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
sink2 = ValueOf(string(testdata[:len(testdata)%(i+1)]))
}
})
// Interface measures the time to store a string into an interface.
b.Run("Interface", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
sink3 = string(testdata[:len(testdata)%(i+1)])
}
})
_, _, _ = sink1, sink2, sink3
}