Joe Tsai 378c1329de reflect/protoreflect: add alternative message reflection API
Added API:
	Message.Len
	Message.Range
	Message.Has
	Message.Clear
	Message.Get
	Message.Set
	Message.Mutable
	Message.NewMessage
	Message.WhichOneof
	Message.GetUnknown
	Message.SetUnknown

Deprecated API (to be removed in subsequent CL):
	Message.KnownFields
	Message.UnknownFields

The primary difference with the new API is that the top-level
Message methods are keyed by FieldDescriptor rather than FieldNumber
with the following semantics:
* For known fields, the FieldDescriptor must exactly match the
field descriptor known by the message.
* For extension fields, the FieldDescriptor must implement ExtensionType,
where ContainingMessage.FullName matches the message name, and
the field number is within the message's extension range.
When setting an extension field, it automatically stores
the extension type information.
* Extension fields are always considered nullable,
implying that repeated extension fields are nullable.
That is, you can distinguish between a unpopulated list and an empty list.
* Message.Get always returns a valid Value even if unpopulated.
The behavior is already well-defined for scalars, but for unpopulated
composite types, it now returns an empty read-only version of it.

Change-Id: Ia120630b4db221aeaaf743d0f64160e1a61a0f61
Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/175458
Reviewed-by: Damien Neil <dneil@google.com>
2019-06-17 17:33:24 +00:00

552 lines
17 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
pvalue "google.golang.org/protobuf/internal/value"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// MessageInfo provides protobuf related functionality for a given Go type
// that represents a message. A given instance of MessageInfo is tied to
// exactly one Go type, which must be a pointer to a struct type.
type MessageInfo struct {
// GoType is the underlying message Go type and must be populated.
// Once set, this field must never be mutated.
GoType reflect.Type // pointer to struct
// PBType is the underlying message descriptor type and must be populated.
// Once set, this field must never be mutated.
PBType pref.MessageType
initMu sync.Mutex // protects all unexported fields
initDone uint32
// Keep a separate slice of fields for efficient field encoding in tag order
// and because iterating over a slice is substantially faster than a map.
fields map[pref.FieldNumber]*fieldInfo
fieldsOrdered []*fieldInfo
oneofs map[pref.Name]*oneofInfo
getUnknown func(pointer) pref.RawFields
setUnknown func(pointer, pref.RawFields)
extensionMap func(pointer) *extensionMap
unknownFields func(*messageDataType) pref.UnknownFields
extensionFields func(*messageDataType) pref.KnownFields
methods piface.Methods
sizecacheOffset offset
extensionOffset offset
unknownOffset offset
extensionFieldInfosMu sync.RWMutex
extensionFieldInfos map[pref.ExtensionType]*extensionFieldInfo
}
var prefMessageType = reflect.TypeOf((*pref.Message)(nil)).Elem()
// getMessageInfo returns the MessageInfo (if any) for a type.
//
// We find the MessageInfo by calling the ProtoReflect method on the type's
// zero value and looking at the returned type to see if it is a
// messageReflectWrapper. Note that the MessageInfo may still be uninitialized
// at this point.
func getMessageInfo(mt reflect.Type) (mi *MessageInfo, ok bool) {
method, ok := mt.MethodByName("ProtoReflect")
if !ok {
return nil, false
}
if method.Type.NumIn() != 1 || method.Type.NumOut() != 1 || method.Type.Out(0) != prefMessageType {
return nil, false
}
ret := reflect.Zero(mt).Method(method.Index).Call(nil)
m, ok := ret[0].Elem().Interface().(*messageReflectWrapper)
if !ok {
return nil, ok
}
return m.mi, true
}
func (mi *MessageInfo) init() {
// This function is called in the hot path. Inline the sync.Once
// logic, since allocating a closure for Once.Do is expensive.
// Keep init small to ensure that it can be inlined.
if atomic.LoadUint32(&mi.initDone) == 1 {
return
}
mi.initOnce()
}
func (mi *MessageInfo) initOnce() {
mi.initMu.Lock()
defer mi.initMu.Unlock()
if mi.initDone == 1 {
return
}
t := mi.GoType
if t.Kind() != reflect.Ptr && t.Elem().Kind() != reflect.Struct {
panic(fmt.Sprintf("got %v, want *struct kind", t))
}
si := mi.makeStructInfo(t.Elem())
mi.makeKnownFieldsFunc(si)
mi.makeUnknownFieldsFunc(t.Elem())
mi.makeExtensionFieldsFunc(t.Elem())
mi.makeMethods(t.Elem())
atomic.StoreUint32(&mi.initDone, 1)
}
type (
SizeCache = int32
UnknownFields = []byte
ExtensionFields = map[int32]ExtensionField
)
var (
sizecacheType = reflect.TypeOf(SizeCache(0))
unknownFieldsType = reflect.TypeOf(UnknownFields(nil))
extensionFieldsType = reflect.TypeOf(ExtensionFields(nil))
)
func (mi *MessageInfo) makeMethods(t reflect.Type) {
mi.sizecacheOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_sizecache"); fx.Type == sizecacheType {
mi.sizecacheOffset = offsetOf(fx)
}
mi.unknownOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_unrecognized"); fx.Type == unknownFieldsType {
mi.unknownOffset = offsetOf(fx)
}
mi.extensionOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_InternalExtensions"); fx.Type == extensionFieldsType {
mi.extensionOffset = offsetOf(fx)
} else if fx, _ = t.FieldByName("XXX_extensions"); fx.Type == extensionFieldsType {
mi.extensionOffset = offsetOf(fx)
}
mi.methods.Flags = piface.MethodFlagDeterministicMarshal
mi.methods.MarshalAppend = mi.marshalAppend
mi.methods.Size = mi.size
}
type structInfo struct {
fieldsByNumber map[pref.FieldNumber]reflect.StructField
oneofsByName map[pref.Name]reflect.StructField
oneofWrappersByType map[reflect.Type]pref.FieldNumber
oneofWrappersByNumber map[pref.FieldNumber]reflect.Type
}
func (mi *MessageInfo) makeStructInfo(t reflect.Type) structInfo {
// Generate a mapping of field numbers and names to Go struct field or type.
si := structInfo{
fieldsByNumber: map[pref.FieldNumber]reflect.StructField{},
oneofsByName: map[pref.Name]reflect.StructField{},
oneofWrappersByType: map[reflect.Type]pref.FieldNumber{},
oneofWrappersByNumber: map[pref.FieldNumber]reflect.Type{},
}
fieldLoop:
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.fieldsByNumber[pref.FieldNumber(n)] = f
continue fieldLoop
}
}
if s := f.Tag.Get("protobuf_oneof"); len(s) > 0 {
si.oneofsByName[pref.Name(s)] = f
continue fieldLoop
}
}
var oneofWrappers []interface{}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofFuncs"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3].Interface().([]interface{})
}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofWrappers"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0].Interface().([]interface{})
}
for _, v := range oneofWrappers {
tf := reflect.TypeOf(v).Elem()
f := tf.Field(0)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.oneofWrappersByType[tf] = pref.FieldNumber(n)
si.oneofWrappersByNumber[pref.FieldNumber(n)] = tf
break
}
}
}
return si
}
// makeKnownFieldsFunc generates functions for operations that can be performed
// on each protobuf message field. It takes in a reflect.Type representing the
// Go struct and matches message fields with struct fields.
//
// This code assumes that the struct is well-formed and panics if there are
// any discrepancies.
func (mi *MessageInfo) makeKnownFieldsFunc(si structInfo) {
mi.fields = map[pref.FieldNumber]*fieldInfo{}
mi.fieldsOrdered = make([]*fieldInfo, 0, mi.PBType.Fields().Len())
for i := 0; i < mi.PBType.Descriptor().Fields().Len(); i++ {
fd := mi.PBType.Descriptor().Fields().Get(i)
fs := si.fieldsByNumber[fd.Number()]
var fi fieldInfo
switch {
case fd.ContainingOneof() != nil:
fi = fieldInfoForOneof(fd, si.oneofsByName[fd.ContainingOneof().Name()], si.oneofWrappersByNumber[fd.Number()])
// There is one fieldInfo for each proto message field, but only one struct
// field for all message fields in a oneof. We install the encoder functions
// on the fieldInfo for the first field in the oneof.
//
// A slightly simpler approach would be to have each fieldInfo's encoder
// handle the case where that field is set, but this would require more
// checks against the current oneof type than a single map lookup.
if fd.ContainingOneof().Fields().Get(0).Name() == fd.Name() {
fi.funcs = makeOneofFieldCoder(si.oneofsByName[fd.ContainingOneof().Name()], fd.ContainingOneof(), si.fieldsByNumber, si.oneofWrappersByNumber)
}
case fd.IsMap():
fi = fieldInfoForMap(fd, fs)
case fd.IsList():
fi = fieldInfoForList(fd, fs)
case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind:
fi = fieldInfoForMessage(fd, fs)
default:
fi = fieldInfoForScalar(fd, fs)
}
fi.num = fd.Number()
mi.fields[fd.Number()] = &fi
mi.fieldsOrdered = append(mi.fieldsOrdered, &fi)
}
sort.Slice(mi.fieldsOrdered, func(i, j int) bool {
return mi.fieldsOrdered[i].num < mi.fieldsOrdered[j].num
})
mi.oneofs = map[pref.Name]*oneofInfo{}
for i := 0; i < mi.PBType.Descriptor().Oneofs().Len(); i++ {
od := mi.PBType.Descriptor().Oneofs().Get(i)
mi.oneofs[od.Name()] = makeOneofInfo(od, si.oneofsByName[od.Name()], si.oneofWrappersByType)
}
}
func (mi *MessageInfo) makeUnknownFieldsFunc(t reflect.Type) {
mi.unknownFields = makeLegacyUnknownFieldsFunc(t)
mi.getUnknown = func(pointer) pref.RawFields { return nil }
mi.setUnknown = func(pointer, pref.RawFields) { return }
fu, _ := t.FieldByName("XXX_unrecognized")
if fu.Type == unknownFieldsType {
fieldOffset := offsetOf(fu)
mi.getUnknown = func(p pointer) pref.RawFields {
if p.IsNil() {
return nil
}
rv := p.Apply(fieldOffset).AsValueOf(unknownFieldsType)
return pref.RawFields(*rv.Interface().(*[]byte))
}
mi.setUnknown = func(p pointer, b pref.RawFields) {
if p.IsNil() {
panic("invalid SetUnknown on nil Message")
}
rv := p.Apply(fieldOffset).AsValueOf(unknownFieldsType)
*rv.Interface().(*[]byte) = []byte(b)
}
} else {
mi.getUnknown = func(pointer) pref.RawFields {
return nil
}
mi.setUnknown = func(p pointer, _ pref.RawFields) {
if p.IsNil() {
panic("invalid SetUnknown on nil Message")
}
}
}
}
func (mi *MessageInfo) makeExtensionFieldsFunc(t reflect.Type) {
mi.extensionFields = makeLegacyExtensionFieldsFunc(t)
fx, _ := t.FieldByName("XXX_extensions")
if fx.Type != extensionFieldsType {
fx, _ = t.FieldByName("XXX_InternalExtensions")
}
if fx.Type == extensionFieldsType {
fieldOffset := offsetOf(fx)
mi.extensionMap = func(p pointer) *extensionMap {
v := p.Apply(fieldOffset).AsValueOf(extensionFieldsType)
return (*extensionMap)(v.Interface().(*map[int32]ExtensionField))
}
} else {
mi.extensionMap = func(pointer) *extensionMap {
return (*extensionMap)(nil)
}
}
}
func (mi *MessageInfo) MessageOf(p interface{}) pref.Message {
return (*messageReflectWrapper)(mi.dataTypeOf(p))
}
func (mi *MessageInfo) Methods() *piface.Methods {
mi.init()
return &mi.methods
}
func (mi *MessageInfo) dataTypeOf(p interface{}) *messageDataType {
// TODO: Remove this check? This API is primarily used by generated code,
// and should not violate this assumption. Leave this check in for now to
// provide some sanity checks during development. This can be removed if
// it proves to be detrimental to performance.
if reflect.TypeOf(p) != mi.GoType {
panic(fmt.Sprintf("type mismatch: got %T, want %v", p, mi.GoType))
}
return &messageDataType{pointerOfIface(p), mi}
}
// messageDataType is a tuple of a pointer to the message data and
// a pointer to the message type.
//
// TODO: Unfortunately, we need to close over a pointer and MessageInfo,
// which incurs an an allocation. This pair is similar to a Go interface,
// which is essentially a tuple of the same thing. We can make this efficient
// with reflect.NamedOf (see https://golang.org/issues/16522).
//
// With that hypothetical API, we could dynamically create a new named type
// that has the same underlying type as MessageInfo.GoType, and
// dynamically create methods that close over MessageInfo.
// Since the new type would have the same underlying type, we could directly
// convert between pointers of those types, giving us an efficient way to swap
// out the method set.
//
// Barring the ability to dynamically create named types, the workaround is
// 1. either to accept the cost of an allocation for this wrapper struct or
// 2. generate more types and methods, at the expense of binary size increase.
type messageDataType struct {
p pointer
mi *MessageInfo
}
type messageReflectWrapper messageDataType
func (m *messageReflectWrapper) Descriptor() pref.MessageDescriptor {
return m.mi.PBType.Descriptor()
}
func (m *messageReflectWrapper) New() pref.Message {
return m.mi.PBType.New()
}
func (m *messageReflectWrapper) Interface() pref.ProtoMessage {
if m, ok := m.ProtoUnwrap().(pref.ProtoMessage); ok {
return m
}
return (*messageIfaceWrapper)(m)
}
func (m *messageReflectWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
func (m *messageReflectWrapper) Len() (cnt int) {
m.mi.init()
for _, fi := range m.mi.fields {
if fi.has(m.p) {
cnt++
}
}
return cnt + m.mi.extensionMap(m.p).Len()
}
func (m *messageReflectWrapper) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
m.mi.init()
for _, fi := range m.mi.fields {
if fi.has(m.p) {
if !f(fi.fieldDesc, fi.get(m.p)) {
return
}
}
}
m.mi.extensionMap(m.p).Range(f)
}
func (m *messageReflectWrapper) Has(fd pref.FieldDescriptor) bool {
if fi, xt := m.checkField(fd); fi != nil {
return fi.has(m.p)
} else {
return m.mi.extensionMap(m.p).Has(xt)
}
}
func (m *messageReflectWrapper) Clear(fd pref.FieldDescriptor) {
if fi, xt := m.checkField(fd); fi != nil {
fi.clear(m.p)
} else {
m.mi.extensionMap(m.p).Clear(xt)
}
}
func (m *messageReflectWrapper) Get(fd pref.FieldDescriptor) pref.Value {
if fi, xt := m.checkField(fd); fi != nil {
return fi.get(m.p)
} else {
return m.mi.extensionMap(m.p).Get(xt)
}
}
func (m *messageReflectWrapper) Set(fd pref.FieldDescriptor, v pref.Value) {
if fi, xt := m.checkField(fd); fi != nil {
fi.set(m.p, v)
} else {
m.mi.extensionMap(m.p).Set(xt, v)
}
}
func (m *messageReflectWrapper) Mutable(fd pref.FieldDescriptor) pref.Value {
if fi, xt := m.checkField(fd); fi != nil {
return fi.mutable(m.p)
} else {
return m.mi.extensionMap(m.p).Mutable(xt)
}
}
func (m *messageReflectWrapper) NewMessage(fd pref.FieldDescriptor) pref.Message {
if fi, xt := m.checkField(fd); fi != nil {
return fi.newMessage()
} else {
return xt.New().Message()
}
}
func (m *messageReflectWrapper) WhichOneof(od pref.OneofDescriptor) pref.FieldDescriptor {
m.mi.init()
if oi := m.mi.oneofs[od.Name()]; oi != nil && oi.oneofDesc == od {
return od.Fields().ByNumber(oi.which(m.p))
}
panic("invalid oneof descriptor")
}
func (m *messageReflectWrapper) GetUnknown() pref.RawFields {
m.mi.init()
return m.mi.getUnknown(m.p)
}
func (m *messageReflectWrapper) SetUnknown(b pref.RawFields) {
m.mi.init()
m.mi.setUnknown(m.p, b)
}
// checkField verifies that the provided field descriptor is valid.
// Exactly one of the returned values is populated.
func (m *messageReflectWrapper) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) {
m.mi.init()
if fi := m.mi.fields[fd.Number()]; fi != nil {
if fi.fieldDesc != fd {
panic("mismatching field descriptor")
}
return fi, nil
}
if fd.IsExtension() {
if fd.ContainingMessage().FullName() != m.mi.PBType.FullName() {
// TODO: Should this be exact containing message descriptor match?
panic("mismatching containing message")
}
if !m.mi.PBType.ExtensionRanges().Has(fd.Number()) {
panic("invalid extension field")
}
return nil, fd.(pref.ExtensionType)
}
panic("invalid field descriptor")
}
type extensionMap map[int32]ExtensionField
func (m *extensionMap) Len() int {
if m != nil {
return len(*m)
}
return 0
}
func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
if m != nil {
for _, x := range *m {
xt := x.GetType()
if !f(xt, xt.ValueOf(x.GetValue())) {
return
}
}
}
}
func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) {
if m != nil {
_, ok = (*m)[int32(xt.Number())]
}
return ok
}
func (m *extensionMap) Clear(xt pref.ExtensionType) {
delete(*m, int32(xt.Number()))
}
func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value {
if m != nil {
if x, ok := (*m)[int32(xt.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
}
if !isComposite(xt) {
return defaultValueOf(xt)
}
return frozenValueOf(xt.New())
}
func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) {
if *m == nil {
*m = make(map[int32]ExtensionField)
}
var x ExtensionField
x.SetType(xt)
x.SetEagerValue(xt.InterfaceOf(v))
(*m)[int32(xt.Number())] = x
}
func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value {
if !isComposite(xt) {
panic("invalid Mutable on field with non-composite type")
}
if x, ok := (*m)[int32(xt.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
v := xt.New()
m.Set(xt, v)
return v
}
func isComposite(fd pref.FieldDescriptor) bool {
return fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind || fd.IsList() || fd.IsMap()
}
var _ pvalue.Unwrapper = (*messageReflectWrapper)(nil)
type messageIfaceWrapper messageDataType
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
return (*messageReflectWrapper)(m)
}
func (m *messageIfaceWrapper) XXX_Methods() *piface.Methods {
// TODO: Consider not recreating this on every call.
m.mi.init()
return &piface.Methods{
Flags: piface.MethodFlagDeterministicMarshal,
MarshalAppend: m.marshalAppend,
Size: m.size,
}
}
func (m *messageIfaceWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
func (m *messageIfaceWrapper) marshalAppend(b []byte, _ pref.ProtoMessage, opts piface.MarshalOptions) ([]byte, error) {
return m.mi.marshalAppendPointer(b, m.p, newMarshalOptions(opts))
}
func (m *messageIfaceWrapper) size(msg pref.ProtoMessage) (size int) {
return m.mi.sizePointer(m.p, 0)
}