// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "fmt" "reflect" "strings" "sync" "google.golang.org/protobuf/internal/filedesc" "google.golang.org/protobuf/internal/strs" "google.golang.org/protobuf/reflect/protoreflect" pref "google.golang.org/protobuf/reflect/protoreflect" ) // legacyEnumName returns the name of enums used in legacy code. // It is neither the protobuf full name nor the qualified Go name, // but rather an odd hybrid of both. func legacyEnumName(ed pref.EnumDescriptor) string { var protoPkg string enumName := string(ed.FullName()) if fd := ed.ParentFile(); fd != nil { protoPkg = string(fd.Package()) enumName = strings.TrimPrefix(enumName, protoPkg+".") } if protoPkg == "" { return strs.GoCamelCase(enumName) } return protoPkg + "." + strs.GoCamelCase(enumName) } // legacyWrapEnum wraps v as a protoreflect.Enum, // where v must be a int32 kind and not implement the v2 API already. func legacyWrapEnum(v reflect.Value) pref.Enum { et := legacyLoadEnumType(v.Type()) return et.New(pref.EnumNumber(v.Int())) } var legacyEnumTypeCache sync.Map // map[reflect.Type]protoreflect.EnumType // legacyLoadEnumType dynamically loads a protoreflect.EnumType for t, // where t must be an int32 kind and not implement the v2 API already. func legacyLoadEnumType(t reflect.Type) pref.EnumType { // Fast-path: check if a EnumType is cached for this concrete type. if et, ok := legacyEnumTypeCache.Load(t); ok { return et.(pref.EnumType) } // Slow-path: derive enum descriptor and initialize EnumType. var et pref.EnumType ed := LegacyLoadEnumDesc(t) et = &legacyEnumType{ desc: ed, goType: t, } if et, ok := legacyEnumTypeCache.LoadOrStore(t, et); ok { return et.(pref.EnumType) } return et } type legacyEnumType struct { desc pref.EnumDescriptor goType reflect.Type m sync.Map // map[protoreflect.EnumNumber]proto.Enum } func (t *legacyEnumType) New(n pref.EnumNumber) pref.Enum { if e, ok := t.m.Load(n); ok { return e.(pref.Enum) } e := &legacyEnumWrapper{num: n, pbTyp: t, goTyp: t.goType} t.m.Store(n, e) return e } func (t *legacyEnumType) GoType() reflect.Type { return t.goType } func (t *legacyEnumType) Descriptor() pref.EnumDescriptor { return t.desc } type legacyEnumWrapper struct { num pref.EnumNumber pbTyp pref.EnumType goTyp reflect.Type } func (e *legacyEnumWrapper) Descriptor() pref.EnumDescriptor { return e.pbTyp.Descriptor() } func (e *legacyEnumWrapper) Type() pref.EnumType { return e.pbTyp } func (e *legacyEnumWrapper) Number() pref.EnumNumber { return e.num } func (e *legacyEnumWrapper) ProtoReflect() pref.Enum { return e } func (e *legacyEnumWrapper) protoUnwrap() interface{} { v := reflect.New(e.goTyp).Elem() v.SetInt(int64(e.num)) return v.Interface() } var ( _ pref.Enum = (*legacyEnumWrapper)(nil) _ unwrapper = (*legacyEnumWrapper)(nil) ) var legacyEnumDescCache sync.Map // map[reflect.Type]protoreflect.EnumDescriptor // LegacyLoadEnumDesc returns an EnumDescriptor derived from the Go type, // which must be an int32 kind and not implement the v2 API already. // // This is exported for testing purposes. func LegacyLoadEnumDesc(t reflect.Type) pref.EnumDescriptor { // Fast-path: check if an EnumDescriptor is cached for this concrete type. if ed, ok := legacyEnumDescCache.Load(t); ok { return ed.(pref.EnumDescriptor) } // Slow-path: initialize EnumDescriptor from the raw descriptor. ev := reflect.Zero(t).Interface() if _, ok := ev.(pref.Enum); ok { panic(fmt.Sprintf("%v already implements proto.Enum", t)) } edV1, ok := ev.(enumV1) if !ok { return aberrantLoadEnumDesc(t) } b, idxs := edV1.EnumDescriptor() var ed pref.EnumDescriptor if len(idxs) == 1 { ed = legacyLoadFileDesc(b).Enums().Get(idxs[0]) } else { md := legacyLoadFileDesc(b).Messages().Get(idxs[0]) for _, i := range idxs[1 : len(idxs)-1] { md = md.Messages().Get(i) } ed = md.Enums().Get(idxs[len(idxs)-1]) } if ed, ok := legacyEnumDescCache.LoadOrStore(t, ed); ok { return ed.(protoreflect.EnumDescriptor) } return ed } var aberrantEnumDescCache sync.Map // map[reflect.Type]protoreflect.EnumDescriptor // aberrantLoadEnumDesc returns an EnumDescriptor derived from the Go type, // which must not implement protoreflect.Enum or enumV1. // // If the type does not implement enumV1, then there is no reliable // way to derive the original protobuf type information. // We are unable to use the global enum registry since it is // unfortunately keyed by the protobuf full name, which we also do not know. // Thus, this produces some bogus enum descriptor based on the Go type name. func aberrantLoadEnumDesc(t reflect.Type) pref.EnumDescriptor { // Fast-path: check if an EnumDescriptor is cached for this concrete type. if ed, ok := aberrantEnumDescCache.Load(t); ok { return ed.(pref.EnumDescriptor) } // Slow-path: construct a bogus, but unique EnumDescriptor. ed := &filedesc.Enum{L2: new(filedesc.EnumL2)} ed.L0.FullName = aberrantDeriveFullName(t) // e.g., github_com.user.repo.MyEnum ed.L0.ParentFile = filedesc.SurrogateProto3 ed.L2.Values.List = append(ed.L2.Values.List, filedesc.EnumValue{}) // TODO: Use the presence of a UnmarshalJSON method to determine proto2? vd := &ed.L2.Values.List[0] vd.L0.FullName = ed.L0.FullName + "_UNKNOWN" // e.g., github_com.user.repo.MyEnum_UNKNOWN vd.L0.ParentFile = ed.L0.ParentFile vd.L0.Parent = ed // TODO: We could use the String method to obtain some enum value names by // starting at 0 and print the enum until it produces invalid identifiers. // An exhaustive query is clearly impractical, but can be best-effort. if ed, ok := aberrantEnumDescCache.LoadOrStore(t, ed); ok { return ed.(pref.EnumDescriptor) } return ed } // aberrantDeriveFullName derives a fully qualified protobuf name for the given Go type // The provided name is not guaranteed to be stable nor universally unique. // It should be sufficiently unique within a program. func aberrantDeriveFullName(t reflect.Type) pref.FullName { sanitize := func(r rune) rune { switch { case r == '/': return '.' case 'a' <= r && r <= 'z', 'A' <= r && r <= 'Z', '0' <= r && r <= '9': return r default: return '_' } } prefix := strings.Map(sanitize, t.PkgPath()) suffix := strings.Map(sanitize, t.Name()) if suffix == "" { suffix = fmt.Sprintf("UnknownX%X", reflect.ValueOf(t).Pointer()) } ss := append(strings.Split(prefix, "."), suffix) for i, s := range ss { if s == "" || ('0' <= s[0] && s[0] <= '9') { ss[i] = "x" + s } } return pref.FullName(strings.Join(ss, ".")) }