// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package prototest exercises protobuf reflection. package prototest import ( "bytes" "fmt" "math" "sort" "testing" prototext "google.golang.org/protobuf/encoding/prototext" "google.golang.org/protobuf/proto" pref "google.golang.org/protobuf/reflect/protoreflect" ) // TODO: Test read-only properties of unpopulated composite values. // TODO: Test invalid field descriptors or oneof descriptors. // TODO: This should test the functionality that can be provided by fast-paths. // TestMessage runs the provided m through a series of tests // exercising the protobuf reflection API. func TestMessage(t testing.TB, m proto.Message) { md := m.ProtoReflect().Descriptor() m1 := m.ProtoReflect().New() for i := 0; i < md.Fields().Len(); i++ { fd := md.Fields().Get(i) switch { case fd.IsList(): testFieldList(t, m1, fd) case fd.IsMap(): testFieldMap(t, m1, fd) case fd.Kind() == pref.FloatKind || fd.Kind() == pref.DoubleKind: testFieldFloat(t, m1, fd) } testField(t, m1, fd) } for i := 0; i < md.Oneofs().Len(); i++ { testOneof(t, m1, md.Oneofs().Get(i)) } // TODO: Extensions, unknown fields. // Test round-trip marshal/unmarshal. m2 := m.ProtoReflect().New().Interface() populateMessage(m2.ProtoReflect(), 1, nil) b, err := proto.Marshal(m2) if err != nil { t.Errorf("Marshal() = %v, want nil\n%v", err, marshalText(m2)) } m3 := m.ProtoReflect().New().Interface() if err := proto.Unmarshal(b, m3); err != nil { t.Errorf("Unmarshal() = %v, want nil\n%v", err, marshalText(m2)) } if !proto.Equal(m2, m3) { t.Errorf("round-trip marshal/unmarshal did not preserve message\nOriginal:\n%v\nNew:\n%v", marshalText(m2), marshalText(m3)) } } func marshalText(m proto.Message) string { b, _ := prototext.MarshalOptions{Indent: " "}.Marshal(m) return string(b) } // testField exercises set/get/has/clear of a field. func testField(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() // Set to a non-zero value, the zero value, different non-zero values. for _, n := range []seed{1, 0, minVal, maxVal} { v := newValue(m, fd, n, nil) m.Set(fd, v) wantHas := true if n == 0 { if fd.Syntax() == pref.Proto3 && fd.Message() == nil { wantHas = false } if fd.Cardinality() == pref.Repeated { wantHas = false } if fd.ContainingOneof() != nil { wantHas = true } } if got, want := m.Has(fd), wantHas; got != want { t.Errorf("after setting %q to %v:\nMessage.Has(%v) = %v, want %v", name, formatValue(v), num, got, want) } if got, want := m.Get(fd), v; !valueEqual(got, want) { t.Errorf("after setting %q:\nMessage.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } } m.Clear(fd) if got, want := m.Has(fd), false; got != want { t.Errorf("after clearing %q:\nMessage.Has(%v) = %v, want %v", name, num, got, want) } switch { case fd.IsList(): if got := m.Get(fd); got.List().Len() != 0 { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want empty list", name, num, formatValue(got)) } case fd.IsMap(): if got := m.Get(fd); got.Map().Len() != 0 { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want empty list", name, num, formatValue(got)) } case fd.Message() == nil: if got, want := m.Get(fd), fd.Default(); !valueEqual(got, want) { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want default %v", name, num, formatValue(got), formatValue(want)) } } } // testFieldMap tests set/get/has/clear of entries in a map field. func testFieldMap(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() m.Clear(fd) // start with an empty map mapv := m.Mutable(fd).Map() // Add values. want := make(testMap) for i, n := range []seed{1, 0, minVal, maxVal} { if got, want := m.Has(fd), i > 0; got != want { t.Errorf("after inserting %d elements to %q:\nMessage.Has(%v) = %v, want %v", i, name, num, got, want) } k := newMapKey(fd, n) v := newMapValue(fd, mapv, n, nil) mapv.Set(k, v) want.Set(k, v) if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after inserting %d elements to %q:\nMessage.Get(%v) = %v, want %v", i, name, num, formatValue(got), formatValue(want)) } } // Set values. want.Range(func(k pref.MapKey, v pref.Value) bool { nv := newMapValue(fd, mapv, 10, nil) mapv.Set(k, nv) want.Set(k, nv) if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after setting element %v of %q:\nMessage.Get(%v) = %v, want %v", formatValue(k.Value()), name, num, formatValue(got), formatValue(want)) } return true }) // Clear values. want.Range(func(k pref.MapKey, v pref.Value) bool { mapv.Clear(k) want.Clear(k) if got, want := m.Has(fd), want.Len() > 0; got != want { t.Errorf("after clearing elements of %q:\nMessage.Has(%v) = %v, want %v", name, num, got, want) } if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after clearing elements of %q:\nMessage.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } return true }) // Non-existent map keys. missingKey := newMapKey(fd, 1) if got, want := mapv.Has(missingKey), false; got != want { t.Errorf("non-existent map key in %q: Map.Has(%v) = %v, want %v", name, formatValue(missingKey.Value()), got, want) } if got, want := mapv.Get(missingKey).IsValid(), false; got != want { t.Errorf("non-existent map key in %q: Map.Get(%v).IsValid() = %v, want %v", name, formatValue(missingKey.Value()), got, want) } mapv.Clear(missingKey) // noop } type testMap map[interface{}]pref.Value func (m testMap) Get(k pref.MapKey) pref.Value { return m[k.Interface()] } func (m testMap) Set(k pref.MapKey, v pref.Value) { m[k.Interface()] = v } func (m testMap) Has(k pref.MapKey) bool { return m.Get(k).IsValid() } func (m testMap) Clear(k pref.MapKey) { delete(m, k.Interface()) } func (m testMap) Len() int { return len(m) } func (m testMap) NewMessage() pref.Message { panic("unimplemented") } func (m testMap) Range(f func(pref.MapKey, pref.Value) bool) { for k, v := range m { if !f(pref.ValueOf(k).MapKey(), v) { return } } } // testFieldList exercises set/get/append/truncate of values in a list. func testFieldList(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() m.Clear(fd) // start with an empty list list := m.Mutable(fd).List() // Append values. var want pref.List = &testList{} for i, n := range []seed{1, 0, minVal, maxVal} { if got, want := m.Has(fd), i > 0; got != want { t.Errorf("after appending %d elements to %q:\nMessage.Has(%v) = %v, want %v", i, name, num, got, want) } v := newListElement(fd, list, n, nil) want.Append(v) list.Append(v) if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after appending %d elements to %q:\nMessage.Get(%v) = %v, want %v", i+1, name, num, formatValue(got), formatValue(want)) } } // Set values. for i := 0; i < want.Len(); i++ { v := newListElement(fd, list, seed(i+10), nil) want.Set(i, v) list.Set(i, v) if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after setting element %d of %q:\nMessage.Get(%v) = %v, want %v", i, name, num, formatValue(got), formatValue(want)) } } // Truncate. for want.Len() > 0 { n := want.Len() - 1 want.Truncate(n) list.Truncate(n) if got, want := m.Has(fd), want.Len() > 0; got != want { t.Errorf("after truncating %q to %d:\nMessage.Has(%v) = %v, want %v", name, n, num, got, want) } if got, want := m.Get(fd), pref.ValueOf(want); !valueEqual(got, want) { t.Errorf("after truncating %q to %d:\nMessage.Get(%v) = %v, want %v", name, n, num, formatValue(got), formatValue(want)) } } } type testList struct { a []pref.Value } func (l *testList) Append(v pref.Value) { l.a = append(l.a, v) } func (l *testList) Get(n int) pref.Value { return l.a[n] } func (l *testList) Len() int { return len(l.a) } func (l *testList) Set(n int, v pref.Value) { l.a[n] = v } func (l *testList) Truncate(n int) { l.a = l.a[:n] } func (l *testList) NewMessage() pref.Message { panic("unimplemented") } // testFieldFloat exercises some interesting floating-point scalar field values. func testFieldFloat(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() for _, v := range []float64{math.Inf(-1), math.Inf(1), math.NaN(), math.Copysign(0, -1)} { var val pref.Value if fd.Kind() == pref.FloatKind { val = pref.ValueOf(float32(v)) } else { val = pref.ValueOf(v) } m.Set(fd, val) // Note that Has is true for -0. if got, want := m.Has(fd), true; got != want { t.Errorf("after setting %v to %v: Message.Has(%v) = %v, want %v", name, v, num, got, want) } if got, want := m.Get(fd), val; !valueEqual(got, want) { t.Errorf("after setting %v: Message.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } } } // testOneof tests the behavior of fields in a oneof. func testOneof(t testing.TB, m pref.Message, od pref.OneofDescriptor) { for i := 0; i < od.Fields().Len(); i++ { fda := od.Fields().Get(i) m.Set(fda, newValue(m, fda, 1, nil)) if got, want := m.WhichOneof(od), fda; got != want { t.Errorf("after setting oneof field %q:\nWhichOneof(%q) = %v, want %v", fda.FullName(), fda.Name(), got, want) } for j := 0; j < od.Fields().Len(); j++ { fdb := od.Fields().Get(j) if got, want := m.Has(fdb), i == j; got != want { t.Errorf("after setting oneof field %q:\nGet(%q) = %v, want %v", fda.FullName(), fdb.FullName(), got, want) } } } } func formatValue(v pref.Value) string { switch v := v.Interface().(type) { case pref.List: var buf bytes.Buffer buf.WriteString("list[") for i := 0; i < v.Len(); i++ { if i > 0 { buf.WriteString(" ") } buf.WriteString(formatValue(v.Get(i))) } buf.WriteString("]") return buf.String() case pref.Map: var buf bytes.Buffer buf.WriteString("map[") var keys []pref.MapKey v.Range(func(k pref.MapKey, v pref.Value) bool { keys = append(keys, k) return true }) sort.Slice(keys, func(i, j int) bool { return keys[i].String() < keys[j].String() }) for i, k := range keys { if i > 0 { buf.WriteString(" ") } buf.WriteString(formatValue(k.Value())) buf.WriteString(":") buf.WriteString(formatValue(v.Get(k))) } buf.WriteString("]") return buf.String() case pref.Message: b, err := prototext.Marshal(v.Interface()) if err != nil { return fmt.Sprintf("<%v>", err) } return fmt.Sprintf("%v{%v}", v.Descriptor().FullName(), string(b)) case string: return fmt.Sprintf("%q", v) default: return fmt.Sprint(v) } } func valueEqual(a, b pref.Value) bool { ai, bi := a.Interface(), b.Interface() switch ai.(type) { case pref.Message: return proto.Equal( a.Message().Interface(), b.Message().Interface(), ) case pref.List: lista, listb := a.List(), b.List() if lista.Len() != listb.Len() { return false } for i := 0; i < lista.Len(); i++ { if !valueEqual(lista.Get(i), listb.Get(i)) { return false } } return true case pref.Map: mapa, mapb := a.Map(), b.Map() if mapa.Len() != mapb.Len() { return false } equal := true mapa.Range(func(k pref.MapKey, v pref.Value) bool { if !valueEqual(v, mapb.Get(k)) { equal = false return false } return true }) return equal case []byte: return bytes.Equal(a.Bytes(), b.Bytes()) case float32: // NaNs are equal, but must be the same NaN. return math.Float32bits(ai.(float32)) == math.Float32bits(bi.(float32)) case float64: // NaNs are equal, but must be the same NaN. return math.Float64bits(ai.(float64)) == math.Float64bits(bi.(float64)) default: return ai == bi } } // A seed is used to vary the content of a value. // // A seed of 0 is the zero value. Messages do not have a zero-value; a 0-seeded messages // is unpopulated. // // A seed of minVal or maxVal is the least or greatest value of the value type. type seed int const ( minVal seed = -1 maxVal seed = -2 ) // newValue returns a new value assignable to a field. // // The stack parameter is used to avoid infinite recursion when populating circular // data structures. func newValue(m pref.Message, fd pref.FieldDescriptor, n seed, stack []pref.MessageDescriptor) pref.Value { switch { case fd.IsList(): list := m.New().Mutable(fd).List() if n == 0 { return pref.ValueOf(list) } list.Append(newListElement(fd, list, 0, stack)) list.Append(newListElement(fd, list, minVal, stack)) list.Append(newListElement(fd, list, maxVal, stack)) list.Append(newListElement(fd, list, n, stack)) return pref.ValueOf(list) case fd.IsMap(): mapv := m.New().Mutable(fd).Map() if n == 0 { return pref.ValueOf(mapv) } mapv.Set(newMapKey(fd, 0), newMapValue(fd, mapv, 0, stack)) mapv.Set(newMapKey(fd, minVal), newMapValue(fd, mapv, minVal, stack)) mapv.Set(newMapKey(fd, maxVal), newMapValue(fd, mapv, maxVal, stack)) mapv.Set(newMapKey(fd, n), newMapValue(fd, mapv, 10*n, stack)) return pref.ValueOf(mapv) case fd.Message() != nil: return populateMessage(m.Mutable(fd).Message(), n, stack) default: return newScalarValue(fd, n) } } func newListElement(fd pref.FieldDescriptor, list pref.List, n seed, stack []pref.MessageDescriptor) pref.Value { if fd.Message() == nil { return newScalarValue(fd, n) } return populateMessage(list.NewMessage(), n, stack) } func newMapKey(fd pref.FieldDescriptor, n seed) pref.MapKey { kd := fd.MapKey() return newScalarValue(kd, n).MapKey() } func newMapValue(fd pref.FieldDescriptor, mapv pref.Map, n seed, stack []pref.MessageDescriptor) pref.Value { vd := fd.MapValue() if vd.Message() == nil { return newScalarValue(vd, n) } return populateMessage(mapv.NewMessage(), n, stack) } func newScalarValue(fd pref.FieldDescriptor, n seed) pref.Value { switch fd.Kind() { case pref.BoolKind: return pref.ValueOf(n != 0) case pref.EnumKind: // TODO: use actual value return pref.ValueOf(pref.EnumNumber(n)) case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind: switch n { case minVal: return pref.ValueOf(int32(math.MinInt32)) case maxVal: return pref.ValueOf(int32(math.MaxInt32)) default: return pref.ValueOf(int32(n)) } case pref.Uint32Kind, pref.Fixed32Kind: switch n { case minVal: // Only use 0 for the zero value. return pref.ValueOf(uint32(1)) case maxVal: return pref.ValueOf(uint32(math.MaxInt32)) default: return pref.ValueOf(uint32(n)) } case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind: switch n { case minVal: return pref.ValueOf(int64(math.MinInt64)) case maxVal: return pref.ValueOf(int64(math.MaxInt64)) default: return pref.ValueOf(int64(n)) } case pref.Uint64Kind, pref.Fixed64Kind: switch n { case minVal: // Only use 0 for the zero value. return pref.ValueOf(uint64(1)) case maxVal: return pref.ValueOf(uint64(math.MaxInt64)) default: return pref.ValueOf(uint64(n)) } case pref.FloatKind: switch n { case minVal: return pref.ValueOf(float32(math.SmallestNonzeroFloat32)) case maxVal: return pref.ValueOf(float32(math.MaxFloat32)) default: return pref.ValueOf(1.5 * float32(n)) } case pref.DoubleKind: switch n { case minVal: return pref.ValueOf(float64(math.SmallestNonzeroFloat64)) case maxVal: return pref.ValueOf(float64(math.MaxFloat64)) default: return pref.ValueOf(1.5 * float64(n)) } case pref.StringKind: if n == 0 { return pref.ValueOf("") } return pref.ValueOf(fmt.Sprintf("%d", n)) case pref.BytesKind: if n == 0 { return pref.ValueOf([]byte(nil)) } return pref.ValueOf([]byte{byte(n >> 24), byte(n >> 16), byte(n >> 8), byte(n)}) } panic("unhandled kind") } func populateMessage(m pref.Message, n seed, stack []pref.MessageDescriptor) pref.Value { if n == 0 { return pref.ValueOf(m) } md := m.Descriptor() for _, x := range stack { if md == x { return pref.ValueOf(m) } } stack = append(stack, md) for i := 0; i < md.Fields().Len(); i++ { fd := md.Fields().Get(i) if fd.IsWeak() { continue } m.Set(fd, newValue(m, fd, 10*n+seed(i), stack)) } return pref.ValueOf(m) }