// Copyright 2024 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Go native fuzzing was added in go1.18. Remove this once we stop supporting // go1.17. //go:build go1.18 package proto_test import ( "math" "testing" "github.com/google/go-cmp/cmp" "google.golang.org/protobuf/proto" "google.golang.org/protobuf/testing/protocmp" testfuzzpb "google.golang.org/protobuf/internal/testprotos/editionsfuzztest" ) func TestUnmarshalInvalidGroupField(t *testing.T) { in := []byte("\x82\x01\x010") // Test proto2 proto proto2Proto := &testfuzzpb.TestAllTypesProto2{} if err := proto.Unmarshal(in, proto2Proto); err != nil { t.Error(err) } // Test equivalent editions proto editionsProto := &testfuzzpb.TestAllTypesProto2Editions{} if err := proto.Unmarshal(in, editionsProto); err != nil { t.Error(err) } } // compareEquivalentProtos compares equivalent messages m0 and m1, where one is // typically a Protobuf Editions message and the other isn't. It unmarshals the // wireBytes into a message of type m0 and one of type m1 and compares the // resulting messages for equality (ignoring type names). m0 and m1 must // describe equivalent messages, meaning having the same field numbers and // types. func compareEquivalentProtos(t *testing.T, wireBytes []byte, m0, m1 proto.Message) { t.Helper() m0Instance := m0.ProtoReflect().Type().New().Interface() errM0 := proto.Unmarshal(wireBytes, m0Instance) m1Instance := m1.ProtoReflect().Type().New().Interface() errM1 := proto.Unmarshal(wireBytes, m1Instance) // Check that the error are the same (possible nil) errorsMatch := (errM1 != nil) == (errM0 != nil) if errM1 != nil && errM0 != nil { errorsMatch = errM1.Error() == errM0.Error() } if !errorsMatch { t.Fatalf("errors not equal:\neditions error: %v\nproto2 error:%v", errM1, errM0) } // Marshal the editions proto and unmarshal it into the equivalent proto2 // message to be able to compare the messages. // This tests slightly more than necessary but should only lead to more // coverage (unless the marshalling would undo errors of the unmarshalling // which is very unlikely). roundTrippedM0 := m0.ProtoReflect().Type().New().Interface() err := roundTripMessage(roundTrippedM0, m1Instance) if err != nil { t.Fatalf("failed round tripping proto: %v", err) } // The cmp package does not deal with NaN on its own and will report // NaN != NaN. optNaN64 := cmp.Comparer(func(x, y float32) bool { return (math.IsNaN(float64(x)) && math.IsNaN(float64(y))) || x == y }) optNaN32 := cmp.Comparer(func(x, y float64) bool { return (math.IsNaN(x) && math.IsNaN(y)) || x == y }) if diff := cmp.Diff(m0Instance, roundTrippedM0, protocmp.Transform(), optNaN64, optNaN32); diff != "" { t.Error(diff) } } func FuzzProto2EditionConversion(f *testing.F) { f.Add([]byte("Hello World!")) f.Fuzz(func(t *testing.T, in []byte) { compareEquivalentProtos(t, in, (*testfuzzpb.TestAllTypesProto2)(nil), (*testfuzzpb.TestAllTypesProto2Editions)(nil)) }) } func FuzzProto3EditionConversion(f *testing.F) { f.Add([]byte("Hello World!")) f.Fuzz(func(t *testing.T, in []byte) { compareEquivalentProtos(t, in, (*testfuzzpb.TestAllTypesProto3)(nil), (*testfuzzpb.TestAllTypesProto3Editions)(nil)) }) }