// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package prototest exercises protobuf reflection. package prototest import ( "bytes" "fmt" "math" "reflect" "sort" "testing" "google.golang.org/protobuf/encoding/prototext" "google.golang.org/protobuf/internal/encoding/wire" "google.golang.org/protobuf/proto" pref "google.golang.org/protobuf/reflect/protoreflect" preg "google.golang.org/protobuf/reflect/protoregistry" ) // TODO: Test invalid field descriptors or oneof descriptors. // TODO: This should test the functionality that can be provided by fast-paths. // MessageOptions configure message tests. type MessageOptions struct { // ExtensionTypes is a list of types to test with. // // If nil, TestMessage will look for extension types in the global registry. ExtensionTypes []pref.ExtensionType // Resolver is used for looking up types when unmarshaling extension fields. // If nil, this defaults to using protoregistry.GlobalTypes. Resolver interface { preg.ExtensionTypeResolver } } // TestMessage runs the provided m through a series of tests // exercising the protobuf reflection API. func TestMessage(t testing.TB, m proto.Message, opts MessageOptions) { testType(t, m) md := m.ProtoReflect().Descriptor() m1 := m.ProtoReflect().New() for i := 0; i < md.Fields().Len(); i++ { fd := md.Fields().Get(i) testField(t, m1, fd) } if opts.ExtensionTypes == nil { preg.GlobalTypes.RangeExtensionsByMessage(md.FullName(), func(e pref.ExtensionType) bool { opts.ExtensionTypes = append(opts.ExtensionTypes, e) return true }) } for _, xt := range opts.ExtensionTypes { testField(t, m1, xt.TypeDescriptor()) } for i := 0; i < md.Oneofs().Len(); i++ { testOneof(t, m1, md.Oneofs().Get(i)) } testUnknown(t, m1) // Test round-trip marshal/unmarshal. m2 := m.ProtoReflect().New().Interface() populateMessage(m2.ProtoReflect(), 1, nil) for _, xt := range opts.ExtensionTypes { m2.ProtoReflect().Set(xt.TypeDescriptor(), newValue(m2.ProtoReflect(), xt.TypeDescriptor(), 1, nil)) } b, err := proto.MarshalOptions{ AllowPartial: true, }.Marshal(m2) if err != nil { t.Errorf("Marshal() = %v, want nil\n%v", err, marshalText(m2)) } m3 := m.ProtoReflect().New().Interface() if err := (proto.UnmarshalOptions{ AllowPartial: true, Resolver: opts.Resolver, }.Unmarshal(b, m3)); err != nil { t.Errorf("Unmarshal() = %v, want nil\n%v", err, marshalText(m2)) } if !proto.Equal(m2, m3) { t.Errorf("round-trip marshal/unmarshal did not preserve message\nOriginal:\n%v\nNew:\n%v", marshalText(m2), marshalText(m3)) } } func marshalText(m proto.Message) string { b, _ := prototext.MarshalOptions{Indent: " "}.Marshal(m) return string(b) } func testType(t testing.TB, m proto.Message) { want := reflect.TypeOf(m) if got := reflect.TypeOf(m.ProtoReflect().Interface()); got != want { t.Errorf("type mismatch: reflect.TypeOf(m) != reflect.TypeOf(m.ProtoReflect().Interface()): %v != %v", got, want) } if got := reflect.TypeOf(m.ProtoReflect().New().Interface()); got != want { t.Errorf("type mismatch: reflect.TypeOf(m) != reflect.TypeOf(m.ProtoReflect().New().Interface()): %v != %v", got, want) } if got := reflect.TypeOf(m.ProtoReflect().Type().Zero().Interface()); got != want { t.Errorf("type mismatch: reflect.TypeOf(m) != reflect.TypeOf(m.ProtoReflect().Type().Zero().Interface()): %v != %v", got, want) } } // testField exercises set/get/has/clear of a field. func testField(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() switch { case fd.IsList(): testFieldList(t, m, fd) case fd.IsMap(): testFieldMap(t, m, fd) case fd.Message() != nil: default: if got, want := m.NewField(fd), fd.Default(); !valueEqual(got, want) { t.Errorf("Message.NewField(%v) = %v, want default value %v", name, formatValue(got), formatValue(want)) } if fd.Kind() == pref.FloatKind || fd.Kind() == pref.DoubleKind { testFieldFloat(t, m, fd) } } // Set to a non-zero value, the zero value, different non-zero values. for _, n := range []seed{1, 0, minVal, maxVal} { v := newValue(m, fd, n, nil) m.Set(fd, v) wantHas := true if n == 0 { if fd.Syntax() == pref.Proto3 && fd.Message() == nil { wantHas = false } if fd.IsExtension() { wantHas = true } if fd.Cardinality() == pref.Repeated { wantHas = false } if fd.ContainingOneof() != nil { wantHas = true } } if fd.Syntax() == pref.Proto3 && fd.Cardinality() != pref.Repeated && fd.ContainingOneof() == nil && fd.Kind() == pref.EnumKind && v.Enum() == 0 { wantHas = false } if got, want := m.Has(fd), wantHas; got != want { t.Errorf("after setting %q to %v:\nMessage.Has(%v) = %v, want %v", name, formatValue(v), num, got, want) } if got, want := m.Get(fd), v; !valueEqual(got, want) { t.Errorf("after setting %q:\nMessage.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } found := false m.Range(func(d pref.FieldDescriptor, got pref.Value) bool { if fd != d { return true } found = true if want := v; !valueEqual(got, want) { t.Errorf("after setting %q:\nMessage.Range got value %v, want %v", name, formatValue(got), formatValue(want)) } return true }) if got, want := wantHas, found; got != want { t.Errorf("after setting %q:\nMessageRange saw field: %v, want %v", name, got, want) } } m.Clear(fd) if got, want := m.Has(fd), false; got != want { t.Errorf("after clearing %q:\nMessage.Has(%v) = %v, want %v", name, num, got, want) } switch { case fd.IsList(): if got := m.Get(fd); got.List().Len() != 0 { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want empty list", name, num, formatValue(got)) } case fd.IsMap(): if got := m.Get(fd); got.Map().Len() != 0 { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want empty map", name, num, formatValue(got)) } case fd.Message() == nil: if got, want := m.Get(fd), fd.Default(); !valueEqual(got, want) { t.Errorf("after clearing %q:\nMessage.Get(%v) = %v, want default %v", name, num, formatValue(got), formatValue(want)) } } // Set to the default value. switch { case fd.IsList() || fd.IsMap(): m.Set(fd, m.Mutable(fd)) if got, want := m.Has(fd), (fd.IsExtension() && fd.Cardinality() != pref.Repeated) || fd.ContainingOneof() != nil; got != want { t.Errorf("after setting %q to default:\nMessage.Has(%v) = %v, want %v", name, num, got, want) } case fd.Message() == nil: m.Set(fd, m.Get(fd)) if got, want := m.Get(fd), fd.Default(); !valueEqual(got, want) { t.Errorf("after setting %q to default:\nMessage.Get(%v) = %v, want default %v", name, num, formatValue(got), formatValue(want)) } } m.Clear(fd) // Set to the wrong type. v := pref.ValueOfString("") if fd.Kind() == pref.StringKind { v = pref.ValueOfInt32(0) } if !panics(func() { m.Set(fd, v) }) { t.Errorf("setting %v to %T succeeds, want panic", name, v.Interface()) } } // testFieldMap tests set/get/has/clear of entries in a map field. func testFieldMap(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() // New values. m.Clear(fd) // start with an empty map mapv := m.Get(fd).Map() if mapv.IsValid() { t.Errorf("after clearing field: message.Get(%v).IsValid() = true, want false", name) } if got, want := mapv.NewValue(), newMapValue(fd, mapv, 0, nil); !valueEqual(got, want) { t.Errorf("message.Get(%v).NewValue() = %v, want %v", name, formatValue(got), formatValue(want)) } if !panics(func() { m.Set(fd, pref.ValueOfMap(mapv)) }) { t.Errorf("message.Set(%v, ) does not panic", name) } if !panics(func() { mapv.Set(newMapKey(fd, 0), newMapValue(fd, mapv, 0, nil)) }) { t.Errorf("message.Get(%v).Set(...) of invalid map does not panic", name) } mapv = m.Mutable(fd).Map() // mutable map if !mapv.IsValid() { t.Errorf("message.Mutable(%v).IsValid() = false, want true", name) } if got, want := mapv.NewValue(), newMapValue(fd, mapv, 0, nil); !valueEqual(got, want) { t.Errorf("message.Mutable(%v).NewValue() = %v, want %v", name, formatValue(got), formatValue(want)) } // Add values. want := make(testMap) for i, n := range []seed{1, 0, minVal, maxVal} { if got, want := m.Has(fd), i > 0; got != want { t.Errorf("after inserting %d elements to %q:\nMessage.Has(%v) = %v, want %v", i, name, num, got, want) } k := newMapKey(fd, n) v := newMapValue(fd, mapv, n, nil) mapv.Set(k, v) want.Set(k, v) if got, want := m.Get(fd), pref.ValueOfMap(want); !valueEqual(got, want) { t.Errorf("after inserting %d elements to %q:\nMessage.Get(%v) = %v, want %v", i, name, num, formatValue(got), formatValue(want)) } } // Set values. want.Range(func(k pref.MapKey, v pref.Value) bool { nv := newMapValue(fd, mapv, 10, nil) mapv.Set(k, nv) want.Set(k, nv) if got, want := m.Get(fd), pref.ValueOfMap(want); !valueEqual(got, want) { t.Errorf("after setting element %v of %q:\nMessage.Get(%v) = %v, want %v", formatValue(k.Value()), name, num, formatValue(got), formatValue(want)) } return true }) // Clear values. want.Range(func(k pref.MapKey, v pref.Value) bool { mapv.Clear(k) want.Clear(k) if got, want := m.Has(fd), want.Len() > 0; got != want { t.Errorf("after clearing elements of %q:\nMessage.Has(%v) = %v, want %v", name, num, got, want) } if got, want := m.Get(fd), pref.ValueOfMap(want); !valueEqual(got, want) { t.Errorf("after clearing elements of %q:\nMessage.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } return true }) if mapv := m.Get(fd).Map(); mapv.IsValid() { t.Errorf("after clearing all elements: message.Get(%v).IsValid() = true, want false %v", name, formatValue(pref.ValueOfMap(mapv))) } // Non-existent map keys. missingKey := newMapKey(fd, 1) if got, want := mapv.Has(missingKey), false; got != want { t.Errorf("non-existent map key in %q: Map.Has(%v) = %v, want %v", name, formatValue(missingKey.Value()), got, want) } if got, want := mapv.Get(missingKey).IsValid(), false; got != want { t.Errorf("non-existent map key in %q: Map.Get(%v).IsValid() = %v, want %v", name, formatValue(missingKey.Value()), got, want) } mapv.Clear(missingKey) // noop } type testMap map[interface{}]pref.Value func (m testMap) Get(k pref.MapKey) pref.Value { return m[k.Interface()] } func (m testMap) Set(k pref.MapKey, v pref.Value) { m[k.Interface()] = v } func (m testMap) Has(k pref.MapKey) bool { return m.Get(k).IsValid() } func (m testMap) Clear(k pref.MapKey) { delete(m, k.Interface()) } func (m testMap) Len() int { return len(m) } func (m testMap) NewValue() pref.Value { panic("unimplemented") } func (m testMap) Range(f func(pref.MapKey, pref.Value) bool) { for k, v := range m { if !f(pref.ValueOf(k).MapKey(), v) { return } } } func (m testMap) IsValid() bool { return true } // testFieldList exercises set/get/append/truncate of values in a list. func testFieldList(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() m.Clear(fd) // start with an empty list list := m.Get(fd).List() if list.IsValid() { t.Errorf("message.Get(%v).IsValid() = true, want false", name) } if !panics(func() { m.Set(fd, pref.ValueOfList(list)) }) { t.Errorf("message.Set(%v, ) does not panic", name) } if !panics(func() { list.Append(newListElement(fd, list, 0, nil)) }) { t.Errorf("message.Get(%v).Append(...) of invalid list does not panic", name) } if got, want := list.NewElement(), newListElement(fd, list, 0, nil); !valueEqual(got, want) { t.Errorf("message.Get(%v).NewElement() = %v, want %v", name, formatValue(got), formatValue(want)) } list = m.Mutable(fd).List() // mutable list if !list.IsValid() { t.Errorf("message.Get(%v).IsValid() = false, want true", name) } if got, want := list.NewElement(), newListElement(fd, list, 0, nil); !valueEqual(got, want) { t.Errorf("message.Mutable(%v).NewElement() = %v, want %v", name, formatValue(got), formatValue(want)) } // Append values. var want pref.List = &testList{} for i, n := range []seed{1, 0, minVal, maxVal} { if got, want := m.Has(fd), i > 0; got != want { t.Errorf("after appending %d elements to %q:\nMessage.Has(%v) = %v, want %v", i, name, num, got, want) } v := newListElement(fd, list, n, nil) want.Append(v) list.Append(v) if got, want := m.Get(fd), pref.ValueOfList(want); !valueEqual(got, want) { t.Errorf("after appending %d elements to %q:\nMessage.Get(%v) = %v, want %v", i+1, name, num, formatValue(got), formatValue(want)) } } // Set values. for i := 0; i < want.Len(); i++ { v := newListElement(fd, list, seed(i+10), nil) want.Set(i, v) list.Set(i, v) if got, want := m.Get(fd), pref.ValueOfList(want); !valueEqual(got, want) { t.Errorf("after setting element %d of %q:\nMessage.Get(%v) = %v, want %v", i, name, num, formatValue(got), formatValue(want)) } } // Truncate. for want.Len() > 0 { n := want.Len() - 1 want.Truncate(n) list.Truncate(n) if got, want := m.Has(fd), want.Len() > 0; got != want { t.Errorf("after truncating %q to %d:\nMessage.Has(%v) = %v, want %v", name, n, num, got, want) } if got, want := m.Get(fd), pref.ValueOfList(want); !valueEqual(got, want) { t.Errorf("after truncating %q to %d:\nMessage.Get(%v) = %v, want %v", name, n, num, formatValue(got), formatValue(want)) } } } type testList struct { a []pref.Value } func (l *testList) Append(v pref.Value) { l.a = append(l.a, v) } func (l *testList) Get(n int) pref.Value { return l.a[n] } func (l *testList) Len() int { return len(l.a) } func (l *testList) Set(n int, v pref.Value) { l.a[n] = v } func (l *testList) Truncate(n int) { l.a = l.a[:n] } func (l *testList) NewElement() pref.Value { panic("unimplemented") } func (l *testList) IsValid() bool { return true } // testFieldFloat exercises some interesting floating-point scalar field values. func testFieldFloat(t testing.TB, m pref.Message, fd pref.FieldDescriptor) { name := fd.FullName() num := fd.Number() for _, v := range []float64{math.Inf(-1), math.Inf(1), math.NaN(), math.Copysign(0, -1)} { var val pref.Value if fd.Kind() == pref.FloatKind { val = pref.ValueOfFloat32(float32(v)) } else { val = pref.ValueOfFloat64(float64(v)) } m.Set(fd, val) // Note that Has is true for -0. if got, want := m.Has(fd), true; got != want { t.Errorf("after setting %v to %v: Message.Has(%v) = %v, want %v", name, v, num, got, want) } if got, want := m.Get(fd), val; !valueEqual(got, want) { t.Errorf("after setting %v: Message.Get(%v) = %v, want %v", name, num, formatValue(got), formatValue(want)) } } } // testOneof tests the behavior of fields in a oneof. func testOneof(t testing.TB, m pref.Message, od pref.OneofDescriptor) { for _, mutable := range []bool{false, true} { for i := 0; i < od.Fields().Len(); i++ { fda := od.Fields().Get(i) if mutable { // Set fields by requesting a mutable reference. if !fda.IsMap() && !fda.IsList() && fda.Message() == nil { continue } _ = m.Mutable(fda) } else { // Set fields explicitly. m.Set(fda, newValue(m, fda, 1, nil)) } if got, want := m.WhichOneof(od), fda; got != want { t.Errorf("after setting oneof field %q:\nWhichOneof(%q) = %v, want %v", fda.FullName(), fda.Name(), got, want) } for j := 0; j < od.Fields().Len(); j++ { fdb := od.Fields().Get(j) if got, want := m.Has(fdb), i == j; got != want { t.Errorf("after setting oneof field %q:\nGet(%q) = %v, want %v", fda.FullName(), fdb.FullName(), got, want) } } } } } // testUnknown tests the behavior of unknown fields. func testUnknown(t testing.TB, m pref.Message) { var b []byte b = wire.AppendTag(b, 1000, wire.VarintType) b = wire.AppendVarint(b, 1001) m.SetUnknown(pref.RawFields(b)) if got, want := []byte(m.GetUnknown()), b; !bytes.Equal(got, want) { t.Errorf("after setting unknown fields:\nGetUnknown() = %v, want %v", got, want) } } func formatValue(v pref.Value) string { switch v := v.Interface().(type) { case pref.List: var buf bytes.Buffer buf.WriteString("list[") for i := 0; i < v.Len(); i++ { if i > 0 { buf.WriteString(" ") } buf.WriteString(formatValue(v.Get(i))) } buf.WriteString("]") return buf.String() case pref.Map: var buf bytes.Buffer buf.WriteString("map[") var keys []pref.MapKey v.Range(func(k pref.MapKey, v pref.Value) bool { keys = append(keys, k) return true }) sort.Slice(keys, func(i, j int) bool { return keys[i].String() < keys[j].String() }) for i, k := range keys { if i > 0 { buf.WriteString(" ") } buf.WriteString(formatValue(k.Value())) buf.WriteString(":") buf.WriteString(formatValue(v.Get(k))) } buf.WriteString("]") return buf.String() case pref.Message: b, err := prototext.Marshal(v.Interface()) if err != nil { return fmt.Sprintf("<%v>", err) } return fmt.Sprintf("%v{%v}", v.Descriptor().FullName(), string(b)) case string: return fmt.Sprintf("%q", v) default: return fmt.Sprint(v) } } func valueEqual(a, b pref.Value) bool { ai, bi := a.Interface(), b.Interface() switch ai.(type) { case pref.Message: return proto.Equal( a.Message().Interface(), b.Message().Interface(), ) case pref.List: lista, listb := a.List(), b.List() if lista.Len() != listb.Len() { return false } for i := 0; i < lista.Len(); i++ { if !valueEqual(lista.Get(i), listb.Get(i)) { return false } } return true case pref.Map: mapa, mapb := a.Map(), b.Map() if mapa.Len() != mapb.Len() { return false } equal := true mapa.Range(func(k pref.MapKey, v pref.Value) bool { if !valueEqual(v, mapb.Get(k)) { equal = false return false } return true }) return equal case []byte: return bytes.Equal(a.Bytes(), b.Bytes()) case float32: // NaNs are equal, but must be the same NaN. return math.Float32bits(ai.(float32)) == math.Float32bits(bi.(float32)) case float64: // NaNs are equal, but must be the same NaN. return math.Float64bits(ai.(float64)) == math.Float64bits(bi.(float64)) default: return ai == bi } } // A seed is used to vary the content of a value. // // A seed of 0 is the zero value. Messages do not have a zero-value; a 0-seeded messages // is unpopulated. // // A seed of minVal or maxVal is the least or greatest value of the value type. type seed int const ( minVal seed = -1 maxVal seed = -2 ) // newSeed creates new seed values from a base, for example to create seeds for the // elements in a list. If the input seed is minVal or maxVal, so is the output. func newSeed(n seed, adjust ...int) seed { switch n { case minVal, maxVal: return n } for _, a := range adjust { n = 10*n + seed(a) } return n } // newValue returns a new value assignable to a field. // // The stack parameter is used to avoid infinite recursion when populating circular // data structures. func newValue(m pref.Message, fd pref.FieldDescriptor, n seed, stack []pref.MessageDescriptor) pref.Value { switch { case fd.IsList(): if n == 0 { return m.New().Mutable(fd) } list := m.NewField(fd).List() list.Append(newListElement(fd, list, 0, stack)) list.Append(newListElement(fd, list, minVal, stack)) list.Append(newListElement(fd, list, maxVal, stack)) list.Append(newListElement(fd, list, n, stack)) return pref.ValueOfList(list) case fd.IsMap(): if n == 0 { return m.New().Mutable(fd) } mapv := m.NewField(fd).Map() mapv.Set(newMapKey(fd, 0), newMapValue(fd, mapv, 0, stack)) mapv.Set(newMapKey(fd, minVal), newMapValue(fd, mapv, minVal, stack)) mapv.Set(newMapKey(fd, maxVal), newMapValue(fd, mapv, maxVal, stack)) mapv.Set(newMapKey(fd, n), newMapValue(fd, mapv, newSeed(n, 0), stack)) return pref.ValueOfMap(mapv) case fd.Message() != nil: //if n == 0 { // return m.New().Get(fd) //} return populateMessage(m.NewField(fd).Message(), n, stack) default: return newScalarValue(fd, n) } } func newListElement(fd pref.FieldDescriptor, list pref.List, n seed, stack []pref.MessageDescriptor) pref.Value { if fd.Message() == nil { return newScalarValue(fd, n) } return populateMessage(list.NewElement().Message(), n, stack) } func newMapKey(fd pref.FieldDescriptor, n seed) pref.MapKey { kd := fd.MapKey() return newScalarValue(kd, n).MapKey() } func newMapValue(fd pref.FieldDescriptor, mapv pref.Map, n seed, stack []pref.MessageDescriptor) pref.Value { vd := fd.MapValue() if vd.Message() == nil { return newScalarValue(vd, n) } return populateMessage(mapv.NewValue().Message(), n, stack) } func newScalarValue(fd pref.FieldDescriptor, n seed) pref.Value { switch fd.Kind() { case pref.BoolKind: return pref.ValueOfBool(n != 0) case pref.EnumKind: vals := fd.Enum().Values() var i int switch n { case minVal: i = 0 case maxVal: i = vals.Len() - 1 default: i = int(n) % vals.Len() } return pref.ValueOfEnum(vals.Get(i).Number()) case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind: switch n { case minVal: return pref.ValueOfInt32(math.MinInt32) case maxVal: return pref.ValueOfInt32(math.MaxInt32) default: return pref.ValueOfInt32(int32(n)) } case pref.Uint32Kind, pref.Fixed32Kind: switch n { case minVal: // Only use 0 for the zero value. return pref.ValueOfUint32(1) case maxVal: return pref.ValueOfUint32(math.MaxInt32) default: return pref.ValueOfUint32(uint32(n)) } case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind: switch n { case minVal: return pref.ValueOfInt64(math.MinInt64) case maxVal: return pref.ValueOfInt64(math.MaxInt64) default: return pref.ValueOfInt64(int64(n)) } case pref.Uint64Kind, pref.Fixed64Kind: switch n { case minVal: // Only use 0 for the zero value. return pref.ValueOfUint64(1) case maxVal: return pref.ValueOfUint64(math.MaxInt64) default: return pref.ValueOfUint64(uint64(n)) } case pref.FloatKind: switch n { case minVal: return pref.ValueOfFloat32(math.SmallestNonzeroFloat32) case maxVal: return pref.ValueOfFloat32(math.MaxFloat32) default: return pref.ValueOfFloat32(1.5 * float32(n)) } case pref.DoubleKind: switch n { case minVal: return pref.ValueOfFloat64(math.SmallestNonzeroFloat64) case maxVal: return pref.ValueOfFloat64(math.MaxFloat64) default: return pref.ValueOfFloat64(1.5 * float64(n)) } case pref.StringKind: if n == 0 { return pref.ValueOfString("") } return pref.ValueOfString(fmt.Sprintf("%d", n)) case pref.BytesKind: if n == 0 { return pref.ValueOfBytes(nil) } return pref.ValueOfBytes([]byte{byte(n >> 24), byte(n >> 16), byte(n >> 8), byte(n)}) } panic("unhandled kind") } func populateMessage(m pref.Message, n seed, stack []pref.MessageDescriptor) pref.Value { if n == 0 { return pref.ValueOfMessage(m) } md := m.Descriptor() for _, x := range stack { if md == x { return pref.ValueOfMessage(m) } } stack = append(stack, md) for i := 0; i < md.Fields().Len(); i++ { fd := md.Fields().Get(i) if fd.IsWeak() { continue } m.Set(fd, newValue(m, fd, newSeed(n, i), stack)) } return pref.ValueOfMessage(m) } func panics(f func()) (didPanic bool) { defer func() { if err := recover(); err != nil { didPanic = true } }() f() return false }