// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "fmt" "reflect" "strings" "sync" "unicode" "google.golang.org/protobuf/internal/descopts" ptag "google.golang.org/protobuf/internal/encoding/tag" "google.golang.org/protobuf/internal/filedesc" "google.golang.org/protobuf/internal/strs" "google.golang.org/protobuf/reflect/protoreflect" pref "google.golang.org/protobuf/reflect/protoreflect" "google.golang.org/protobuf/reflect/prototype" ) // legacyWrapMessage wraps v as a protoreflect.ProtoMessage, // where v must be a *struct kind and not implement the v2 API already. func legacyWrapMessage(v reflect.Value) pref.ProtoMessage { mt := legacyLoadMessageInfo(v.Type()) return mt.MessageOf(v.Interface()).Interface() } var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo // legacyLoadMessageInfo dynamically loads a *MessageInfo for t, // where t must be a *struct kind and not implement the v2 API already. func legacyLoadMessageInfo(t reflect.Type) *MessageInfo { // Fast-path: check if a MessageInfo is cached for this concrete type. if mt, ok := legacyMessageTypeCache.Load(t); ok { return mt.(*MessageInfo) } // Slow-path: derive message descriptor and initialize MessageInfo. md := LegacyLoadMessageDesc(t) mt := new(MessageInfo) mt.GoType = t mt.PBType = &prototype.Message{ MessageDescriptor: md, NewMessage: func() pref.Message { return mt.MessageOf(reflect.New(t.Elem()).Interface()) }, } if mt, ok := legacyMessageTypeCache.LoadOrStore(t, mt); ok { return mt.(*MessageInfo) } return mt } var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type, // which must be a *struct kind and not implement the v2 API already. // // This is exported for testing purposes. func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor { // Fast-path: check if a MessageDescriptor is cached for this concrete type. if mi, ok := legacyMessageDescCache.Load(t); ok { return mi.(pref.MessageDescriptor) } // Slow-path: initialize MessageDescriptor from the raw descriptor. mv := reflect.New(t.Elem()).Interface() if _, ok := mv.(pref.ProtoMessage); ok { panic(fmt.Sprintf("%v already implements proto.Message", t)) } mdV1, ok := mv.(messageV1) if !ok { return aberrantLoadMessageDesc(t) } b, idxs := mdV1.Descriptor() md := legacyLoadFileDesc(b).Messages().Get(idxs[0]) for _, i := range idxs[1:] { md = md.Messages().Get(i) } if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok { return md.(protoreflect.MessageDescriptor) } return md } var ( aberrantMessageDescLock sync.Mutex aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor ) // aberrantLoadMessageDesc returns an EnumDescriptor derived from the Go type, // which must not implement protoreflect.ProtoMessage or messageV1. // // This is a best-effort derivation of the message descriptor using the protobuf // tags on the struct fields. func aberrantLoadMessageDesc(t reflect.Type) pref.MessageDescriptor { aberrantMessageDescLock.Lock() defer aberrantMessageDescLock.Unlock() if aberrantMessageDescCache == nil { aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor) } return aberrantLoadMessageDescReentrant(t) } func aberrantLoadMessageDescReentrant(t reflect.Type) pref.MessageDescriptor { // Fast-path: check if an MessageDescriptor is cached for this concrete type. if md, ok := aberrantMessageDescCache[t]; ok { return md } // Slow-path: construct a descriptor from the Go struct type (best-effort). // Cache the MessageDescriptor early on so that we can resolve internal // cyclic references. md := &filedesc.Message{L2: new(filedesc.MessageL2)} md.L0.FullName = aberrantDeriveFullName(t.Elem()) md.L0.ParentFile = filedesc.SurrogateProto2 aberrantMessageDescCache[t] = md // Try to determine if the message is using proto3 by checking scalars. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { switch f.Type.Kind() { case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: md.L0.ParentFile = filedesc.SurrogateProto3 } for _, s := range strings.Split(tag, ",") { if s == "proto3" { md.L0.ParentFile = filedesc.SurrogateProto3 } } } } // Obtain a list of oneof wrapper types. var oneofWrappers []reflect.Type if fn, ok := t.MethodByName("XXX_OneofFuncs"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3] for _, v := range vs.Interface().([]interface{}) { oneofWrappers = append(oneofWrappers, reflect.TypeOf(v)) } } if fn, ok := t.MethodByName("XXX_OneofWrappers"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0] for _, v := range vs.Interface().([]interface{}) { oneofWrappers = append(oneofWrappers, reflect.TypeOf(v)) } } // Obtain a list of the extension ranges. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok { vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0] for i := 0; i < vs.Len(); i++ { v := vs.Index(i) md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{ pref.FieldNumber(v.FieldByName("Start").Int()), pref.FieldNumber(v.FieldByName("End").Int() + 1), }) md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil) } } // Derive the message fields by inspecting the struct fields. for i := 0; i < t.Elem().NumField(); i++ { f := t.Elem().Field(i) if tag := f.Tag.Get("protobuf"); tag != "" { tagKey := f.Tag.Get("protobuf_key") tagVal := f.Tag.Get("protobuf_val") aberrantAppendField(md, f.Type, tag, tagKey, tagVal) } if tag := f.Tag.Get("protobuf_oneof"); tag != "" { n := len(md.L2.Oneofs.List) md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{}) od := &md.L2.Oneofs.List[n] od.L0.FullName = md.FullName().Append(pref.Name(tag)) od.L0.ParentFile = md.L0.ParentFile od.L0.Parent = md od.L0.Index = n for _, t := range oneofWrappers { if t.Implements(f.Type) { f := t.Elem().Field(0) if tag := f.Tag.Get("protobuf"); tag != "" { aberrantAppendField(md, f.Type, tag, "", "") fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1] fd.L1.ContainingOneof = od od.L1.Fields.List = append(od.L1.Fields.List, fd) } } } } } // TODO: Use custom Marshal/Unmarshal methods for the fast-path? return md } func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) { t := goType isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8 if isOptional || isRepeated { t = t.Elem() } fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field) // Append field descriptor to the message. n := len(md.L2.Fields.List) md.L2.Fields.List = append(md.L2.Fields.List, *fd) fd = &md.L2.Fields.List[n] fd.L0.FullName = md.FullName().Append(fd.Name()) fd.L0.ParentFile = md.L0.ParentFile fd.L0.Parent = md fd.L0.Index = n if fd.L1.IsWeak || fd.L1.HasPacked { fd.L1.Options = func() pref.ProtoMessage { opts := descopts.Field.ProtoReflect().New() if fd.L1.IsWeak { opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOf(true)) } if fd.L1.HasPacked { opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOf(fd.L1.IsPacked)) } return opts.Interface() } } // Populate Enum and Message. if fd.Enum() == nil && fd.Kind() == pref.EnumKind { switch v := reflect.Zero(t).Interface().(type) { case pref.Enum: fd.L1.Enum = v.Descriptor() default: fd.L1.Enum = LegacyLoadEnumDesc(t) } } if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) { switch v := reflect.Zero(t).Interface().(type) { case pref.ProtoMessage: fd.L1.Message = v.ProtoReflect().Descriptor() case messageV1: fd.L1.Message = LegacyLoadMessageDesc(t) default: if t.Kind() == reflect.Map { n := len(md.L1.Messages.List) md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)}) md2 := &md.L1.Messages.List[n] md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name())))) md2.L0.ParentFile = md.L0.ParentFile md2.L0.Parent = md md2.L0.Index = n md2.L2.IsMapEntry = true md2.L2.Options = func() pref.ProtoMessage { opts := descopts.Message.ProtoReflect().New() opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOf(true)) return opts.Interface() } aberrantAppendField(md2, t.Key(), tagKey, "", "") aberrantAppendField(md2, t.Elem(), tagVal, "", "") fd.L1.Message = md2 break } fd.L1.Message = aberrantLoadMessageDescReentrant(t) } } } type placeholderEnumValues struct { protoreflect.EnumValueDescriptors } func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor { return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n))) } // aberrantMapEntryName derives the name for a map entry message. // See protoc v3.8.0: src/google/protobuf/descriptor.cc:254-276,6057 func aberrantMapEntryName(s pref.Name) pref.Name { var b []byte upperNext := true for _, c := range s { switch { case c == '_': upperNext = true case upperNext: b = append(b, byte(unicode.ToUpper(c))) upperNext = false default: b = append(b, byte(c)) } } b = append(b, "Entry"...) return pref.Name(b) }