// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package impl import ( "reflect" "sync" "unsafe" protoV1 "github.com/golang/protobuf/proto" pref "github.com/golang/protobuf/v2/reflect/protoreflect" ) // TODO: The logic in the file is a hack and should be in the v1 repository. // We need to break the dependency on proto v1 since it is v1 that will // eventually need to depend on v2. // TODO: The v1 API currently exposes no exported functionality for interacting // with the extension data structures. We will need to make changes in v1 so // that v2 can access these data structures without relying on unsafe. var ( extTypeA = reflect.TypeOf(map[int32]protoV1.Extension(nil)) extTypeB = reflect.TypeOf(protoV1.XXX_InternalExtensions{}) ) type legacyExtensionIface interface { Len() int Has(pref.FieldNumber) bool Get(pref.FieldNumber) legacyExtensionEntry Set(pref.FieldNumber, legacyExtensionEntry) Clear(pref.FieldNumber) Range(f func(pref.FieldNumber, legacyExtensionEntry) bool) } func makeLegacyExtensionMapFunc(t reflect.Type) func(*messageDataType) legacyExtensionIface { fx1, _ := t.FieldByName("XXX_extensions") fx2, _ := t.FieldByName("XXX_InternalExtensions") switch { case fx1.Type == extTypeA: return func(p *messageDataType) legacyExtensionIface { rv := p.p.asType(t).Elem() return (*legacyExtensionMap)(unsafe.Pointer(rv.UnsafeAddr() + fx1.Offset)) } case fx2.Type == extTypeB: return func(p *messageDataType) legacyExtensionIface { rv := p.p.asType(t).Elem() return (*legacyExtensionSyncMap)(unsafe.Pointer(rv.UnsafeAddr() + fx2.Offset)) } default: return nil } } // TODO: We currently don't do locking with legacyExtensionSyncMap.p.mu. // The locking behavior was already obscure "feature" beforehand, // and it is not obvious how it translates to the v2 API. // The v2 API presents a Range method, which calls a user provided function, // which may in turn call other methods on the map. In such a use case, // acquiring a lock within each method would result in a reentrant deadlock. // legacyExtensionSyncMap is identical to protoV1.XXX_InternalExtensions. // It implements legacyExtensionIface. type legacyExtensionSyncMap struct { p *struct { mu sync.Mutex m legacyExtensionMap } } func (m legacyExtensionSyncMap) Len() int { if m.p == nil { return 0 } return m.p.m.Len() } func (m legacyExtensionSyncMap) Has(n pref.FieldNumber) bool { return m.p.m.Has(n) } func (m legacyExtensionSyncMap) Get(n pref.FieldNumber) legacyExtensionEntry { if m.p == nil { return legacyExtensionEntry{} } return m.p.m.Get(n) } func (m *legacyExtensionSyncMap) Set(n pref.FieldNumber, x legacyExtensionEntry) { if m.p == nil { m.p = new(struct { mu sync.Mutex m legacyExtensionMap }) } m.p.m.Set(n, x) } func (m legacyExtensionSyncMap) Clear(n pref.FieldNumber) { m.p.m.Clear(n) } func (m legacyExtensionSyncMap) Range(f func(pref.FieldNumber, legacyExtensionEntry) bool) { if m.p == nil { return } m.p.m.Range(f) } // legacyExtensionMap is identical to map[int32]protoV1.Extension. // It implements legacyExtensionIface. type legacyExtensionMap map[pref.FieldNumber]legacyExtensionEntry func (m legacyExtensionMap) Len() int { return len(m) } func (m legacyExtensionMap) Has(n pref.FieldNumber) bool { _, ok := m[n] return ok } func (m legacyExtensionMap) Get(n pref.FieldNumber) legacyExtensionEntry { return m[n] } func (m *legacyExtensionMap) Set(n pref.FieldNumber, x legacyExtensionEntry) { if *m == nil { *m = make(map[pref.FieldNumber]legacyExtensionEntry) } (*m)[n] = x } func (m *legacyExtensionMap) Clear(n pref.FieldNumber) { delete(*m, n) } func (m legacyExtensionMap) Range(f func(pref.FieldNumber, legacyExtensionEntry) bool) { for n, x := range m { if !f(n, x) { return } } } // legacyExtensionEntry is identical to protoV1.Extension. type legacyExtensionEntry struct { desc *protoV1.ExtensionDesc val interface{} raw []byte } // TODO: The legacyExtensionInterfaceOf and legacyExtensionValueOf converters // exist since the current storage representation in the v1 data structures use // *T for scalars and []T for repeated fields, but the v2 API operates on // T for scalars and *[]T for repeated fields. // // Instead of maintaining this technical debt in the v2 repository, // we can offload this into the v1 implementation such that it uses a // storage representation that is appropriate for v2, and uses the these // functions to present the illusion that that the underlying storage // is still *T and []T. // // See https://github.com/golang/protobuf/pull/746 const hasPR746 = true // legacyExtensionInterfaceOf converts a protoreflect.Value to the // storage representation used in v1 extension data structures. // // In particular, it represents scalars (except []byte) a pointer to the value, // and repeated fields as the a slice value itself. func legacyExtensionInterfaceOf(pv pref.Value, t pref.ExtensionType) interface{} { v := t.InterfaceOf(pv) if !hasPR746 { switch rv := reflect.ValueOf(v); rv.Kind() { case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: // Represent primitive types as a pointer to the value. rv2 := reflect.New(rv.Type()) rv2.Elem().Set(rv) v = rv2.Interface() case reflect.Ptr: // Represent pointer to slice types as the value itself. switch rv.Type().Elem().Kind() { case reflect.Slice: if rv.IsNil() { v = reflect.Zero(rv.Type().Elem()).Interface() } else { v = rv.Elem().Interface() } } } } return v } // legacyExtensionValueOf converts the storage representation of a value in // the v1 extension data structures to a protoreflect.Value. // // In particular, it represents scalars as the value itself, // and repeated fields as a pointer to the slice value. func legacyExtensionValueOf(v interface{}, t pref.ExtensionType) pref.Value { if !hasPR746 { switch rv := reflect.ValueOf(v); rv.Kind() { case reflect.Ptr: // Represent slice types as the value itself. switch rv.Type().Elem().Kind() { case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String: if rv.IsNil() { v = reflect.Zero(rv.Type().Elem()).Interface() } else { v = rv.Elem().Interface() } } case reflect.Slice: // Represent slice types (except []byte) as a pointer to the value. if rv.Type().Elem().Kind() != reflect.Uint8 { rv2 := reflect.New(rv.Type()) rv2.Elem().Set(rv) v = rv2.Interface() } } } return t.ValueOf(v) }