The prototype package was initially used by generated reflection support,
but has now been replaced by internal/fileinit.
Eventually, this functionality should be deleted and re-written in terms
of other components in the repo.
Usages that prototype currently provides (but should be moved) are:
* Constructing standalone messages and enums, which is behavior we should
provide in reflect/protodesc. The google.protobuf.{Enum,Type} are well-known
proto messages designed for this purpose.
* Constructing placeholder files, enums, and messages.
* Consructing protoreflect.{Message,Enum,Extension}Types, which are protobuf
descriptors with associated Go type information.
Change-Id: Id7dbefff952682781b439aa555508c59b2629f9e
Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/167383
Reviewed-by: Damien Neil <dneil@google.com>
This CL takes a significantly different approach to generating support
for protobuf reflection. The previous approach involved generating a
large number of Go literals to represent the reflection information.
While that approach was correct, it resulted in too much binary bloat.
The approach taken here initializes the reflection information from
the raw descriptor proto, which is a relatively dense representation
of the protobuf reflection information. In order to keep initialization
cost low, several measures were taken:
* At program init, the bare minimum is parsed in order to initialize
naming information for enums, messages, extensions, and services declared
in the file. This is done because those top-level declarations are often
relevant for registration.
* Only upon first are most of the other data structures for protobuf
reflection actually initialized.
* Instead of using proto.Unmarshal, a hand-written unmarshaler is used.
This allows us to avoid a dependendency on the descriptor proto and also
because the API for the descriptor proto is fundamentally non-performant
since it requires an allocation for every primitive field.
At a high-level, the new implementation lives in internal/fileinit.
Several changes were made to other parts of the repository:
* cmd/protoc-gen-go:
* Stop compressing the raw descriptors. While compression does reduce
the size of the descriptors by approximately 2x, it is a pre-mature
optimization since the descriptors themselves are around 1% of the total
binary bloat that is due to generated protobufs.
* Seeding protobuf reflection from the raw descriptor significantly
simplifies the generator implementation since it is no longer responsible
for constructing a tree of Go literals to represent the same information.
* We remove the generation of the shadow types and instead call
protoimpl.MessageType.MessageOf. Unfortunately, this incurs an allocation
for every call to ProtoReflect since we need to allocate a tuple that wraps
a pointer to the message value, and a pointer to message type.
* internal/impl:
* We add a MessageType.GoType field and make it required that it is
set prior to first use. This is done so that we can avoid calling
MessageType.init except for when it is actually needed. The allows code
to call (*FooMessage)(nil).ProtoReflect().Type() without fearing that the
init code will run, possibly triggering a recursive deadlock (where the
init code depends on getting the Type of some dependency which may be
declared within the same file).
* internal/cmd/generate-types:
* The code to generate reflect/prototype/protofile_list_gen.go was copied
and altered to generated internal/fileinit.desc_list_gen.go.
At a high-level this CL adds significant technical complexity.
However, this is offset by several possible future changes:
* The prototype package can be drastically simplified. We can probably
reimplement internal/legacy to use internal/fileinit instead, allowing us
to drop another dependency on the prototype package. As a result, we can
probably delete most of the constructor types in that package.
* With the prototype package significantly pruned, and the fact that generated
code no longer depend on depends on that package, we can consider merging
what's left of prototype into protodesc.
Change-Id: I6090f023f2e1b6afaf62bd3ae883566242e30715
Reviewed-on: https://go-review.googlesource.com/c/158539
Reviewed-by: Herbie Ong <herbie@google.com>
Reviewed-by: Joe Tsai <thebrokentoaster@gmail.com>
The impl package currently supports wrapping legacy v1 enums and messages
so that they implement the v2 reflective APIs. This functionality is necessary
for v1 and v2 to interoperate. However, the existence of this functionality
presents several problems:
* A significant portion of the complexity in impl is for legacy wrapping.
* This complexity is linked into a Go binary even if all the other messages
in the binary natively support v2 reflection.
* It presents a cyclic dependency when trying to generate descriptor proto.
Suppose you are generating descriptor.proto. The generated code would want to
depend on the impl package because impl is the runtime implementation for
protobuf messages. However, impl currently depends depends on descriptor in
order to wrap legacy enum and messages since it needs the ability to dynamically
create new protobuf descriptor types. In the case of descriptor.proto, it would
presumably be generated with native reflection support, so the legacy wrapping
logic is unneccessary.
To break the dependency of impl on descriptor, we move the legacy support logic
to a different package and instead add hooks in impl so that legacy support could
be dynamically registered at runtime. This is dependency injection.
Change-Id: I01a582908ed5629993f6699e9bf2f4bee93857a4
Reviewed-on: https://go-review.googlesource.com/c/151877
Reviewed-by: Herbie Ong <herbie@google.com>
The new v1 protoapi package enables:
* Referencing types in the protoapi package instead of protoV1, which further
reduces the number of situations where we need to depend on protoV1.
This is for the goal of eventually breaking all cases where the v2 implementation
relies on v1, so that in the near future, proto v1 can rely on proto v2 instead.
* Removes the need for legacy_extension_hack.go since that functionality has now
been exported into the protoapi package.
Change-Id: If71002d9ec711bfabfe494636829df9abf19e23e
Reviewed-on: https://go-review.googlesource.com/c/151403
Reviewed-by: Herbie Ong <herbie@google.com>
The XXX_OneofWrappers method is a simplified way to obtain the wrapper structs
compared the previous XXX_OneofFuncs method which returned far more information
that was strictly necessary.
Change-Id: I2670506a2a8f7e8e724846b8c4083e7995371007
Reviewed-on: https://go-review.googlesource.com/c/151679
Reviewed-by: Herbie Ong <herbie@google.com>
Add the scalar package to reduce dependencies on the v1 proto runtime package.
It may very well be the case that these functions should be exposed in the
public API of v2, but that is not a decision we need to make now.
Change-Id: Ifbc6d15311ba5837909ac72af47c630a80a142ef
Reviewed-on: https://go-review.googlesource.com/c/151402
Reviewed-by: Herbie Ong <herbie@google.com>
Clearly specify that Get on an unpopulated field:
* returns the default value for scalars
* returns a mutable (but empty) List for repeated fields
* returns a mutable (but empty) Map for map fields
* returns an invalid value for message fields
The difference in semantics between List+Maps and Messages is because
protobuf semantics provide no distinction between an unpopulated and empty list
or map. On the other hand, there is a semantic difference between an unpopulated
message and an empty message.
Default values for scalars is trivial to implement with FieldDescriptor.Default.
A mutable, but empty List and Map is easy to implement for known fields since
known fields are generated as a slice or map field in a struct.
Since struct fields are addressable, the implementation can just return a
reference to the slice or map.
Repeated, extension fields are a little more tricky since extension fields
are implemented under the hood as a map[FieldNumber]Extension.
Rather than allocating an empty list in KnownFields.Get upon first retrieval
(which presents a race), delegate the work to ExtensionFieldTypes.Register,
which must occur before any Get operation. Register is not a concurrent-safe
operation, so that is an excellent time to initilize empty lists.
The implementation of extensions will need to be careful that Clear on a repeated
field simply truncates it zero instead of deleting the object.
For unpopulated messages, we return an invalid value, instead of the prior
behavior of returning a typed nil-pointer to the Go type for the message.
The approach is problematic because it assumes that
1) all messages are always implemented on a pointer reciever
2) a typed nil-pointer is an appropriate "read-only, but empty" message
These assumptions are not true of all message types (e.g., dynamic messages).
Change-Id: Ie96e6744c890308d9de738b6cf01d3b19e7e7c6a
Reviewed-on: https://go-review.googlesource.com/c/150319
Reviewed-by: Damien Neil <dneil@google.com>
Add more extensive tests to ensure that the reflective API works for both
enums and messages. We tests the situation where a v2 message has dependencies
on v1 messages and vice versa.
Change-Id: Ib85d465711728ae13743bea700b678d9dda5e85c
Reviewed-on: https://go-review.googlesource.com/c/149758
Reviewed-by: Herbie Ong <herbie@google.com>
The terminology Vector does not occur in protobuf documentation at all,
so we should rename the Go use of the term to something more recognizable.
As such, all instances that match the regexp "[Vv]ect(or)?" were replaced.
The C++ documentation uses the term "Repeated", which is a reasonable name.
However, the term became overloaded in 2014, when maps were added as a feature
and implementated under the hood as repeated fields. This is confusing as it
means "repeated" could either refer to repeated fields proper (i.e., explicitly
marked with the "repeated" label in the proto file) or map fields. In the case
of the C++ reflective API, this is not a problem since repeated fields proper
and map fields are interacted with through the same RepeatedField type.
In Go, we do not use a single type to handle both types of repeated fields:
1) We are coming up with the Go protobuf reflection API for the first time
and so do not need to piggy-back on the repeated fields API to remain backwards
compatible since no former usages of Go protobuf reflection exists.
2) Map fields are commonly represented in Go as the Go map type, which do not
preserve ordering information. As such it is fundamentally impossible to present
an unordered map as a consistently ordered list. Thus, Go needs two different
interfaces for lists and maps.
Given the above situation, "Repeated" is not a great term to use since it
refers to two different things (when we only want one of the meanings).
To distinguish between the two, we'll use the terms "List" and "Map" instead.
There is some precedence for the term "List" in the protobuf codebase
(e.g., "getRepeatedInt32List").
Change-Id: Iddcdb6b78e1e60c14fa4ca213c15f45e214b967b
Reviewed-on: https://go-review.googlesource.com/c/149657
Reviewed-by: Damien Neil <dneil@google.com>
Implement support for extension fields for messages that use the v1
data structures for extensions. The legacyExtensionFields type wraps a
v1 map to implement the v2 protoreflect.KnownFields interface.
Working on this change revealed a bug in the dynamic construction of
message types for protobuf messages that had cyclic dependencies (e.g.,
message Foo has a sub-field of message Bar, and Bar has a sub-field of Foo).
In such a situation, a deadlock occurs because initialization code depends on
the very initialization code that is currently running. To break these cycles,
we make some systematic changes listed in the following paragraphs.
Generally speaking, we separate the logic for construction and wrapping,
where constuction does not recursively rely on dependencies,
while wrapping may recursively inspect dependencies.
Promote the MessageType.MessageOf method as a standalone MessageOf function
that dynamically finds the proper *MessageType to use. We make it such that
MessageType only supports two forms of messages types:
* Those that fully implement the v2 API.
* Those that do not implement the v2 API at all.
This removes support for the hybrid form that was exploited by message_test.go
In impl/message_test.go, switch each message to look more like how future
generated messages will look like. This is done in reaction to the fact that
MessageType.MessageOf no longer exists.
In value/{map,vector}.go, fix Unwrap to return a pointer since the underlying
reflect.Value is addressable reference value, not a pointer value.
In value/convert.go, split the logic apart so that obtaining a v2 type and
wrapping a type as v2 are distinct operations. Wrapping requires further
initialization than simply creating the initial message type, and calling it
during initial construction would lead to a deadlock.
In protoreflect/go_type.go, we switch back to a lazy initialization of GoType
to avoid a deadlock since the user-provided fn may rely on the fact that
prototype.GoMessage returned.
Change-Id: I5dea00e36fe1a9899bd2ac0aed2c8e51d5d87420
Reviewed-on: https://go-review.googlesource.com/c/148826
Reviewed-by: Herbie Ong <herbie@google.com>
Add a corpus of generated protobuf messages generated at specific versions
of protoc-gen-go to ensure that we continue to support for generated messages
that have may never be updated.
Change-Id: I04a1b74306f471d7c99f5daf52399a5bd9adcbbc
Reviewed-on: https://go-review.googlesource.com/c/148831
Reviewed-by: Herbie Ong <herbie@google.com>
The unknown fields in legacy messages is split across the XXX_unrecognized
field and also the XXX_InternalExtensions field. Implement support for
wrapping both fields and presenting it as if it were a unified set of
unknown fields.
Change-Id: If274fae2b48962520edd8a640080b6eced747684
Reviewed-on: https://go-review.googlesource.com/c/146517
Reviewed-by: Damien Neil <dneil@google.com>
Unknown fields follow a policy where the latest field takes precedence when
it comes to the ordering. However, the current implementation is incorrect
as it uses a slice and simply swaps the current entry with the last entry.
While this ensures that the latest field seen remains last, it does not ensure
that the swapped out entry is second-to-last.
To provide the desired behavior, a linked-list is used.
For simplicity, we use the list package in the standard library even if it
is neither the most performant nor type safe.
Change-Id: I675145c61f6b5b624ed9e94bbe2251b5a71e2c48
Reviewed-on: https://go-review.googlesource.com/c/145241
Reviewed-by: Damien Neil <dneil@google.com>
Add wrapper data structures to get legacy XXX_unrecognized fields to support
the new protoreflect.UnknownFields interface. This is a challenge since the
field is a []byte, which does not give us much flexibility to work with
in terms of choice of data structures.
This implementation is relatively naive where every operation is O(n) since
it needs to strip through the entire []byte each time. The Range operation
operates slightly differently from ranging over Go maps since it presents a
stale version of RawFields should a mutation occur while ranging.
This distinction is unlikely to affect anyone in practice.
Change-Id: Ib3247cb827f9a0dd6c2192cd59830dca5eef8257
Reviewed-on: https://go-review.googlesource.com/c/144697
Reviewed-by: Damien Neil <dneil@google.com>
Add a method to fetch descriptor options. Since options are proto
messages (e.g., google.protobuf.FieldOptions), and proto message
packages depend on the protoreflect package, returning the actual option
type would cause a dependency cycle. Instead, we return an interface
value which can be type asserted to the appropriate concrete type.
Add options support to the prototype package.
Some of the prototype constructors included fields (such as
Field.IsPacked) which represent information from the options
(such as google.protobuf.FieldOptions.packed). To avoid confusion about
the canonical source of information, drop these fields in favor of the
options.
Drop the unimplemented Descriptor.DescriptorOptionsProto.
Change-Id: I66579b6a7d10d99eb6977402a247306a78913e74
Reviewed-on: https://go-review.googlesource.com/c/144277
Reviewed-by: Joe Tsai <thebrokentoaster@gmail.com>
In order for the v2 rollout to be as seamless as possible, we need to support
the situation where a v2 message depends on some other generated v1 message that
may be stale and does not support the v2 API. In such a situation, there needs
to be some way to wrap a legacy message or enum in such a way that it satisfies
the v2 API.
This wrapping is comprised of two parts:
1) Deriving an enum or message descriptor
2) Providing an reflection implementation for messages
This CL addresses part 1 (while part 2 has already been partially implemented,
since the implementation applies to both v1 and v2).
To derive the enum and message descriptor we rely on a mixture of parsing the
raw descriptor proto and also introspection on the fields in the message.
Methods for obtaining the raw descriptor protos were added in February, 2016,
and so has not always been available. For that reason, we attempt to derive
as much information from the Go type as possible.
As part of this change, we modify prototype to be able to create multiple
standalone messages as a set. This is needed since cyclic dependencies is allowed
between messages within a single proto file.
Change-Id: I71aaf5f977faf9fba03c370b1ee17b3758ce60a6
Reviewed-on: https://go-review.googlesource.com/c/143539
Reviewed-by: Damien Neil <dneil@google.com>