430 lines
12 KiB
Go
Raw Normal View History

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package textpb
import (
"fmt"
"github.com/golang/protobuf/v2/internal/encoding/text"
"github.com/golang/protobuf/v2/internal/errors"
"github.com/golang/protobuf/v2/internal/pragma"
"github.com/golang/protobuf/v2/internal/set"
"github.com/golang/protobuf/v2/proto"
pref "github.com/golang/protobuf/v2/reflect/protoreflect"
"github.com/golang/protobuf/v2/reflect/protoregistry"
)
// Unmarshal reads the given []byte into the given proto.Message.
// TODO: may want to describe when Unmarshal returns error.
func Unmarshal(m proto.Message, b []byte) error {
return UnmarshalOptions{}.Unmarshal(m, b)
}
// UnmarshalOptions is a configurable textproto format parser.
type UnmarshalOptions struct {
pragma.NoUnkeyedLiterals
// Resolver is the registry used for type lookups when unmarshaling extensions
// and processing Any. If Resolver is not set, unmarshaling will default to
// using protoregistry.GlobalTypes.
Resolver *protoregistry.Types
}
// Unmarshal reads the given []byte and populates the given proto.Message using options in
// UnmarshalOptions object.
func (o UnmarshalOptions) Unmarshal(m proto.Message, b []byte) error {
var nerr errors.NonFatal
mr := m.ProtoReflect()
// Clear all fields before populating it.
// TODO: Determine if this needs to be consistent with jsonpb and binary unmarshal where
// behavior is to merge values into existing message. If decision is to not clear the fields
// ahead, code will need to be updated properly when merging nested messages.
resetMessage(mr)
// Parse into text.Value of message type.
val, err := text.Unmarshal(b)
if !nerr.Merge(err) {
return err
}
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
err = o.unmarshalMessage(val.Message(), mr)
if !nerr.Merge(err) {
return err
}
return nerr.E
}
// resetMessage clears all fields of given protoreflect.Message.
// TODO: This should go into the proto package.
func resetMessage(m pref.Message) {
knownFields := m.KnownFields()
knownFields.Range(func(num pref.FieldNumber, _ pref.Value) bool {
knownFields.Clear(num)
return true
})
unknownFields := m.UnknownFields()
unknownFields.Range(func(num pref.FieldNumber, _ pref.RawFields) bool {
unknownFields.Set(num, nil)
return true
})
extTypes := knownFields.ExtensionTypes()
extTypes.Range(func(xt pref.ExtensionType) bool {
extTypes.Remove(xt)
return true
})
}
// unmarshalMessage unmarshals a [][2]text.Value message into the given protoreflect.Message.
func (o UnmarshalOptions) unmarshalMessage(tmsg [][2]text.Value, m pref.Message) error {
var nerr errors.NonFatal
msgType := m.Type()
fieldDescs := msgType.Fields()
reservedNames := msgType.ReservedNames()
knownFields := m.KnownFields()
xtTypes := knownFields.ExtensionTypes()
var reqNums set.Ints
var seenNums set.Ints
for _, tfield := range tmsg {
tkey := tfield[0]
tval := tfield[1]
var fd pref.FieldDescriptor
var name pref.Name
switch tkey.Type() {
case text.Name:
name, _ = tkey.Name()
fd = fieldDescs.ByName(name)
case text.String:
// TODO: Handle Any expansions here as well.
// Handle extensions. Extensions have to be registered first in the message's
// ExtensionTypes before setting a value to it.
xtName := pref.FullName(tkey.String())
// Check first if it is already registered. This is the case for repeated fields.
xt := xtTypes.ByName(xtName)
if xt == nil {
var err error
xt, err = o.Resolver.FindExtensionByName(xtName)
if err != nil && err != protoregistry.NotFound {
return err
}
if xt != nil {
xtTypes.Register(xt)
}
}
fd = xt
}
if fd == nil {
// Ignore reserved names.
if reservedNames.Has(name) {
continue
}
// TODO: Can provide option to ignore unknown message fields.
return errors.New("%v contains unknown field: %v", msgType.FullName(), tkey)
}
if cardinality := fd.Cardinality(); cardinality == pref.Repeated {
// Map or list fields have cardinality of repeated.
if err := o.unmarshalRepeated(tval, fd, knownFields); !nerr.Merge(err) {
return err
}
} else {
// Required or optional fields.
num := uint64(fd.Number())
if seenNums.Has(num) {
return errors.New("non-repeated field %v is repeated", fd.FullName())
}
if err := o.unmarshalSingular(tval, fd, knownFields); !nerr.Merge(err) {
return err
}
if cardinality == pref.Required {
reqNums.Set(num)
}
seenNums.Set(num)
}
}
// Check for any missing required fields.
allReqNums := msgType.RequiredNumbers()
if reqNums.Len() != allReqNums.Len() {
for i := 0; i < allReqNums.Len(); i++ {
if num := allReqNums.Get(i); !reqNums.Has(uint64(num)) {
nerr.AppendRequiredNotSet(string(fieldDescs.ByNumber(num).FullName()))
}
}
}
return nerr.E
}
// unmarshalSingular unmarshals given text.Value into the non-repeated field.
func (o UnmarshalOptions) unmarshalSingular(input text.Value, fd pref.FieldDescriptor, knownFields pref.KnownFields) error {
num := fd.Number()
var nerr errors.NonFatal
var val pref.Value
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
if input.Type() != text.Message {
return errors.New("%v contains invalid message/group value: %v", fd.FullName(), input)
}
m := knownFields.NewMessage(num).ProtoReflect()
if err := o.unmarshalMessage(input.Message(), m); !nerr.Merge(err) {
return err
}
val = pref.ValueOf(m)
default:
var err error
val, err = unmarshalScalar(input, fd)
if !nerr.Merge(err) {
return err
}
}
knownFields.Set(num, val)
return nerr.E
}
// unmarshalRepeated unmarshals given text.Value into a repeated field. Caller should only
// call this for cardinality=repeated.
func (o UnmarshalOptions) unmarshalRepeated(input text.Value, fd pref.FieldDescriptor, knownFields pref.KnownFields) error {
var items []text.Value
// If input is not a list, turn it into a list.
if input.Type() != text.List {
items = []text.Value{input}
} else {
items = input.List()
}
var nerr errors.NonFatal
num := fd.Number()
val := knownFields.Get(num)
if !fd.IsMap() {
if err := o.unmarshalList(items, fd, val.List()); !nerr.Merge(err) {
return err
}
} else {
if err := o.unmarshalMap(items, fd, val.Map()); !nerr.Merge(err) {
return err
}
}
return nerr.E
}
// unmarshalScalar converts the given text.Value to a scalar/enum protoreflect.Value specified in
// the given FieldDescriptor. Caller should not pass in a FieldDescriptor for a message/group kind.
func unmarshalScalar(input text.Value, fd pref.FieldDescriptor) (pref.Value, error) {
const b32 = false
const b64 = true
switch kind := fd.Kind(); kind {
case pref.BoolKind:
if b, ok := input.Bool(); ok {
return pref.ValueOf(bool(b)), nil
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
if n, ok := input.Int(b32); ok {
return pref.ValueOf(int32(n)), nil
}
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
if n, ok := input.Int(b64); ok {
return pref.ValueOf(int64(n)), nil
}
case pref.Uint32Kind, pref.Fixed32Kind:
if n, ok := input.Uint(b32); ok {
return pref.ValueOf(uint32(n)), nil
}
case pref.Uint64Kind, pref.Fixed64Kind:
if n, ok := input.Uint(b64); ok {
return pref.ValueOf(uint64(n)), nil
}
case pref.FloatKind:
if n, ok := input.Float(b32); ok {
return pref.ValueOf(float32(n)), nil
}
case pref.DoubleKind:
if n, ok := input.Float(b64); ok {
return pref.ValueOf(float64(n)), nil
}
case pref.StringKind:
if input.Type() == text.String {
return pref.ValueOf(string(input.String())), nil
}
case pref.BytesKind:
if input.Type() == text.String {
return pref.ValueOf([]byte(input.String())), nil
}
case pref.EnumKind:
// If input is int32, use directly.
if n, ok := input.Int(b32); ok {
return pref.ValueOf(pref.EnumNumber(n)), nil
} else {
if name, ok := input.Name(); ok {
// Lookup EnumNumber based on name.
if enumVal := fd.EnumType().Values().ByName(name); enumVal != nil {
return pref.ValueOf(enumVal.Number()), nil
}
}
}
default:
panic(fmt.Sprintf("invalid scalar kind %v", kind))
}
return pref.Value{}, errors.New("%v contains invalid scalar value: %v", fd.FullName(), input)
}
// unmarshalList unmarshals given []text.Value into given protoreflect.List.
func (o UnmarshalOptions) unmarshalList(inputList []text.Value, fd pref.FieldDescriptor, list pref.List) error {
var nerr errors.NonFatal
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
for _, input := range inputList {
if input.Type() != text.Message {
return errors.New("%v contains invalid message/group value: %v", fd.FullName(), input)
}
m := list.NewMessage().ProtoReflect()
if err := o.unmarshalMessage(input.Message(), m); !nerr.Merge(err) {
return err
}
list.Append(pref.ValueOf(m))
}
default:
for _, input := range inputList {
val, err := unmarshalScalar(input, fd)
if !nerr.Merge(err) {
return err
}
list.Append(val)
}
}
return nerr.E
}
// unmarshalMap unmarshals given []text.Value into given protoreflect.Map.
func (o UnmarshalOptions) unmarshalMap(input []text.Value, fd pref.FieldDescriptor, mmap pref.Map) error {
var nerr errors.NonFatal
fields := fd.MessageType().Fields()
keyDesc := fields.ByNumber(1)
valDesc := fields.ByNumber(2)
// Determine ahead whether map entry is a scalar type or a message type in order to call the
// appropriate unmarshalMapValue func inside the for loop below.
unmarshalMapValue := o.unmarshalMapScalarValue
switch valDesc.Kind() {
case pref.MessageKind, pref.GroupKind:
unmarshalMapValue = o.unmarshalMapMessageValue
}
for _, entry := range input {
if entry.Type() != text.Message {
return errors.New("%v contains invalid map entry: %v", fd.FullName(), entry)
}
tkey, tval, err := parseMapEntry(entry.Message(), fd.FullName())
if !nerr.Merge(err) {
return err
}
pkey, err := unmarshalMapKey(tkey, keyDesc)
if !nerr.Merge(err) {
return err
}
err = unmarshalMapValue(tval, pkey, valDesc, mmap)
if !nerr.Merge(err) {
return err
}
}
return nerr.E
}
// parseMapEntry parses [][2]text.Value for field names key and value, and return corresponding
// field values. If there are duplicate field names, the value for the last field is returned. If
// the field name does not exist, it will return the zero value of text.Value. It will return an
// error if there are unknown field names.
func parseMapEntry(mapEntry [][2]text.Value, name pref.FullName) (key text.Value, value text.Value, err error) {
for _, field := range mapEntry {
keyStr, ok := field[0].Name()
if ok {
switch keyStr {
case "key":
if key.Type() != 0 {
return key, value, errors.New("%v contains duplicate key field", name)
}
key = field[1]
case "value":
if value.Type() != 0 {
return key, value, errors.New("%v contains duplicate value field", name)
}
value = field[1]
default:
ok = false
}
}
if !ok {
// TODO: Do not return error if ignore unknown option is added and enabled.
return key, value, errors.New("%v contains unknown map entry name: %v", name, field[0])
}
}
return key, value, nil
}
// unmarshalMapKey converts given text.Value into a protoreflect.MapKey. A map key type is any
// integral or string type.
func unmarshalMapKey(input text.Value, fd pref.FieldDescriptor) (pref.MapKey, error) {
// If input is not set, use the zero value.
if input.Type() == 0 {
return fd.Default().MapKey(), nil
}
val, err := unmarshalScalar(input, fd)
if err != nil {
return pref.MapKey{}, errors.New("%v contains invalid key: %v", fd.FullName(), input)
}
return val.MapKey(), nil
}
// unmarshalMapMessageValue unmarshals given message-type text.Value into a protoreflect.Map for
// the given MapKey.
func (o UnmarshalOptions) unmarshalMapMessageValue(input text.Value, pkey pref.MapKey, _ pref.FieldDescriptor, mmap pref.Map) error {
var nerr errors.NonFatal
var value [][2]text.Value
if input.Type() != 0 {
value = input.Message()
}
m := mmap.NewMessage().ProtoReflect()
if err := o.unmarshalMessage(value, m); !nerr.Merge(err) {
return err
}
mmap.Set(pkey, pref.ValueOf(m))
return nerr.E
}
// unmarshalMapScalarValue unmarshals given scalar-type text.Value into a protoreflect.Map
// for the given MapKey.
func (o UnmarshalOptions) unmarshalMapScalarValue(input text.Value, pkey pref.MapKey, fd pref.FieldDescriptor, mmap pref.Map) error {
var val pref.Value
if input.Type() == 0 {
val = fd.Default()
} else {
var err error
val, err = unmarshalScalar(input, fd)
if err != nil {
return err
}
}
mmap.Set(pkey, val)
return nil
}