402 lines
12 KiB
Go
Raw Normal View History

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protojson
import (
"encoding/base64"
"fmt"
"sort"
"google.golang.org/protobuf/internal/encoding/json"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
const defaultIndent = " "
// Format formats the message as a multiline string.
// This function is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func Format(m proto.Message) string {
return MarshalOptions{Multiline: true}.Format(m)
}
// Marshal writes the given proto.Message in JSON format using default options.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func Marshal(m proto.Message) ([]byte, error) {
return MarshalOptions{}.Marshal(m)
}
// MarshalOptions is a configurable JSON format marshaler.
type MarshalOptions struct {
pragma.NoUnkeyedLiterals
// Multiline specifies whether the marshaler should format the output in
// indented-form with every textual element on a new line.
// If Indent is an empty string, then an arbitrary indent is chosen.
Multiline bool
// Indent specifies the set of indentation characters to use in a multiline
// formatted output such that every entry is preceded by Indent and
// terminated by a newline. If non-empty, then Multiline is treated as true.
// Indent can only be composed of space or tab characters.
Indent string
// AllowPartial allows messages that have missing required fields to marshal
// without returning an error. If AllowPartial is false (the default),
// Marshal will return error if there are any missing required fields.
AllowPartial bool
// UseProtoNames uses proto field name instead of lowerCamelCase name in JSON
// field names.
UseProtoNames bool
// UseEnumNumbers emits enum values as numbers.
UseEnumNumbers bool
// EmitUnpopulated specifies whether to emit unpopulated fields. It does not
// emit unpopulated oneof fields or unpopulated extension fields.
// The JSON value emitted for unpopulated fields are as follows:
// ╔═══════╤════════════════════════════╗
// ║ JSON │ Protobuf field ║
// ╠═══════╪════════════════════════════╣
// ║ false │ proto3 boolean fields ║
// ║ 0 │ proto3 numeric fields ║
// ║ "" │ proto3 string/bytes fields ║
// ║ null │ proto2 scalar fields ║
// ║ null │ message fields ║
// ║ [] │ list fields ║
// ║ {} │ map fields ║
// ╚═══════╧════════════════════════════╝
EmitUnpopulated bool
proto, encoding/protojson, encoding/prototext: use Resolver interface Instead of accepting a concrete protoregistry.Types type, accept an interface that provides the necessary functionality to perform the serialization. The advantages of this approach: * There is no need for complex logic to allow a Parent or custom Resolver on the protoregistry.Types type. * Users can pass their own custom resolver implementations directly to the serialization functions. * This is a more principled approach to plumbing custom resolvers than the previous approach of overloading behavior on the concrete Types type. The disadvantages of this approach: * A pointer to a concrete type is 8B, while an interface is 16B. However, the expansion of the {Marshal,Unmarshal}Options structs should be a concern solved separately from how to plumb custom resolvers. * The resolver interfaces as defined today may be insufficient to provide functionality needed in the future if protobuf expands its feature set. For example, let's suppose the Any message permits directly representing a enum by name. This would require the ability to lookup an enum by name. To support that hypothetical need, we can document that the serializers type-assert the provided Resolver to a EnumTypeResolver and use that if possible. There is some loss of type safety with this approach, but provides a clear path forward. Change-Id: I81ca80e59335d36be6b43d57ec8e17abfdfa3bad Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/177044 Reviewed-by: Damien Neil <dneil@google.com>
2019-05-14 14:28:19 -07:00
// Resolver is used for looking up types when expanding google.protobuf.Any
// messages. If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.ExtensionTypeResolver
proto, encoding/protojson, encoding/prototext: use Resolver interface Instead of accepting a concrete protoregistry.Types type, accept an interface that provides the necessary functionality to perform the serialization. The advantages of this approach: * There is no need for complex logic to allow a Parent or custom Resolver on the protoregistry.Types type. * Users can pass their own custom resolver implementations directly to the serialization functions. * This is a more principled approach to plumbing custom resolvers than the previous approach of overloading behavior on the concrete Types type. The disadvantages of this approach: * A pointer to a concrete type is 8B, while an interface is 16B. However, the expansion of the {Marshal,Unmarshal}Options structs should be a concern solved separately from how to plumb custom resolvers. * The resolver interfaces as defined today may be insufficient to provide functionality needed in the future if protobuf expands its feature set. For example, let's suppose the Any message permits directly representing a enum by name. This would require the ability to lookup an enum by name. To support that hypothetical need, we can document that the serializers type-assert the provided Resolver to a EnumTypeResolver and use that if possible. There is some loss of type safety with this approach, but provides a clear path forward. Change-Id: I81ca80e59335d36be6b43d57ec8e17abfdfa3bad Reviewed-on: https://go-review.googlesource.com/c/protobuf/+/177044 Reviewed-by: Damien Neil <dneil@google.com>
2019-05-14 14:28:19 -07:00
protoregistry.MessageTypeResolver
}
}
// Format formats the message as a string.
// This method is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func (o MarshalOptions) Format(m proto.Message) string {
if m == nil || !m.ProtoReflect().IsValid() {
return "<nil>" // invalid syntax, but okay since this is for debugging
}
o.AllowPartial = true
b, _ := o.Marshal(m)
return string(b)
}
// Marshal marshals the given proto.Message in the JSON format using options in
// MarshalOptions. Do not depend on the output being stable. It may change over
// time across different versions of the program.
func (o MarshalOptions) Marshal(m proto.Message) ([]byte, error) {
return o.marshal(m)
}
// marshal is a centralized function that all marshal operations go through.
// For profiling purposes, avoid changing the name of this function or
// introducing other code paths for marshal that do not go through this.
func (o MarshalOptions) marshal(m proto.Message) ([]byte, error) {
if o.Multiline && o.Indent == "" {
o.Indent = defaultIndent
}
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
internalEnc, err := json.NewEncoder(o.Indent)
if err != nil {
return nil, err
}
// Treat nil message interface as an empty message,
// in which case the output in an empty JSON object.
if m == nil {
return []byte("{}"), nil
}
enc := encoder{internalEnc, o}
if err := enc.marshalMessage(m.ProtoReflect()); err != nil {
return nil, err
}
if o.AllowPartial {
return enc.Bytes(), nil
}
return enc.Bytes(), proto.CheckInitialized(m)
}
type encoder struct {
*json.Encoder
opts MarshalOptions
}
// marshalMessage marshals the given protoreflect.Message.
func (e encoder) marshalMessage(m pref.Message) error {
if isCustomType(m.Descriptor().FullName()) {
return e.marshalCustomType(m)
}
e.StartObject()
defer e.EndObject()
if err := e.marshalFields(m); err != nil {
return err
}
return nil
}
// marshalFields marshals the fields in the given protoreflect.Message.
func (e encoder) marshalFields(m pref.Message) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
// Marshal out known fields.
fieldDescs := messageDesc.Fields()
for i := 0; i < fieldDescs.Len(); {
fd := fieldDescs.Get(i)
if od := fd.ContainingOneof(); od != nil {
fd = m.WhichOneof(od)
i += od.Fields().Len()
if fd == nil {
continue // unpopulated oneofs are not affected by EmitUnpopulated
}
} else {
i++
}
val := m.Get(fd)
if !m.Has(fd) {
if !e.opts.EmitUnpopulated {
continue
}
isProto2Scalar := fd.Syntax() == pref.Proto2 && fd.Default().IsValid()
isSingularMessage := fd.Cardinality() != pref.Repeated && fd.Message() != nil
if isProto2Scalar || isSingularMessage {
// Use invalid value to emit null.
val = pref.Value{}
}
}
name := fd.JSONName()
if e.opts.UseProtoNames {
name = string(fd.Name())
// Use type name for group field name.
if fd.Kind() == pref.GroupKind {
name = string(fd.Message().Name())
}
}
if err := e.WriteName(name); err != nil {
return err
}
if err := e.marshalValue(val, fd); err != nil {
return err
}
}
// Marshal out extensions.
if err := e.marshalExtensions(m); err != nil {
return err
}
return nil
}
// marshalValue marshals the given protoreflect.Value.
func (e encoder) marshalValue(val pref.Value, fd pref.FieldDescriptor) error {
switch {
case fd.IsList():
return e.marshalList(val.List(), fd)
case fd.IsMap():
return e.marshalMap(val.Map(), fd)
default:
return e.marshalSingular(val, fd)
}
}
// marshalSingular marshals the given non-repeated field value. This includes
// all scalar types, enums, messages, and groups.
func (e encoder) marshalSingular(val pref.Value, fd pref.FieldDescriptor) error {
if !val.IsValid() {
e.WriteNull()
return nil
}
switch kind := fd.Kind(); kind {
case pref.BoolKind:
e.WriteBool(val.Bool())
case pref.StringKind:
if e.WriteString(val.String()) != nil {
return errors.InvalidUTF8(string(fd.FullName()))
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
e.WriteInt(val.Int())
case pref.Uint32Kind, pref.Fixed32Kind:
e.WriteUint(val.Uint())
case pref.Int64Kind, pref.Sint64Kind, pref.Uint64Kind,
pref.Sfixed64Kind, pref.Fixed64Kind:
// 64-bit integers are written out as JSON string.
e.WriteString(val.String())
case pref.FloatKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 32)
case pref.DoubleKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 64)
case pref.BytesKind:
e.WriteString(base64.StdEncoding.EncodeToString(val.Bytes()))
case pref.EnumKind:
if fd.Enum().FullName() == "google.protobuf.NullValue" {
e.WriteNull()
} else {
desc := fd.Enum().Values().ByNumber(val.Enum())
if e.opts.UseEnumNumbers || desc == nil {
e.WriteInt(int64(val.Enum()))
} else {
e.WriteString(string(desc.Name()))
}
}
case pref.MessageKind, pref.GroupKind:
if err := e.marshalMessage(val.Message()); err != nil {
return err
}
default:
panic(fmt.Sprintf("%v has unknown kind: %v", fd.FullName(), kind))
}
return nil
}
// marshalList marshals the given protoreflect.List.
func (e encoder) marshalList(list pref.List, fd pref.FieldDescriptor) error {
e.StartArray()
defer e.EndArray()
for i := 0; i < list.Len(); i++ {
item := list.Get(i)
if err := e.marshalSingular(item, fd); err != nil {
return err
}
}
return nil
}
type mapEntry struct {
key pref.MapKey
value pref.Value
}
// marshalMap marshals given protoreflect.Map.
func (e encoder) marshalMap(mmap pref.Map, fd pref.FieldDescriptor) error {
e.StartObject()
defer e.EndObject()
// Get a sorted list based on keyType first.
entries := make([]mapEntry, 0, mmap.Len())
mmap.Range(func(key pref.MapKey, val pref.Value) bool {
entries = append(entries, mapEntry{key: key, value: val})
return true
})
sortMap(fd.MapKey().Kind(), entries)
// Write out sorted list.
for _, entry := range entries {
if err := e.WriteName(entry.key.String()); err != nil {
return err
}
if err := e.marshalSingular(entry.value, fd.MapValue()); err != nil {
return err
}
}
return nil
}
// sortMap orders list based on value of key field for deterministic ordering.
func sortMap(keyKind pref.Kind, values []mapEntry) {
sort.Slice(values, func(i, j int) bool {
switch keyKind {
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind,
pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
return values[i].key.Int() < values[j].key.Int()
case pref.Uint32Kind, pref.Fixed32Kind,
pref.Uint64Kind, pref.Fixed64Kind:
return values[i].key.Uint() < values[j].key.Uint()
}
return values[i].key.String() < values[j].key.String()
})
}
// marshalExtensions marshals extension fields.
func (e encoder) marshalExtensions(m pref.Message) error {
type entry struct {
key string
value pref.Value
desc pref.FieldDescriptor
}
// Get a sorted list based on field key first.
var entries []entry
m.Range(func(fd pref.FieldDescriptor, v pref.Value) bool {
if !fd.IsExtension() {
return true
}
// For MessageSet extensions, the name used is the parent message.
name := fd.FullName()
if messageset.IsMessageSetExtension(fd) {
name = name.Parent()
}
// Use [name] format for JSON field name.
entries = append(entries, entry{
key: string(name),
value: v,
desc: fd,
})
return true
})
// Sort extensions lexicographically.
sort.Slice(entries, func(i, j int) bool {
return entries[i].key < entries[j].key
})
// Write out sorted list.
for _, entry := range entries {
// JSON field name is the proto field name enclosed in [], similar to
// textproto. This is consistent with Go v1 lib. C++ lib v3.7.0 does not
// marshal out extension fields.
if err := e.WriteName("[" + entry.key + "]"); err != nil {
return err
}
if err := e.marshalValue(entry.value, entry.desc); err != nil {
return err
}
}
return nil
}