mbedtls/library/sha3.c
Dave Rodgman a7f3c4e1d0
Merge pull request #8822 from daverodgman/sha3-perf
SHA-3 performance & code size
2024-03-12 13:14:40 +00:00

722 lines
22 KiB
C

/*
* FIPS-202 compliant SHA3 implementation
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* The SHA-3 Secure Hash Standard was published by NIST in 2015.
*
* https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
*/
#include "common.h"
#if defined(MBEDTLS_SHA3_C)
/*
* These macros select manually unrolled implementations of parts of the main permutation function.
*
* Unrolling has a major impact on both performance and code size. gcc performance benefits a lot
* from manually unrolling at higher optimisation levels.
*
* Depending on your size/perf priorities, compiler and target, it may be beneficial to adjust
* these; the defaults here should give sensible trade-offs for gcc and clang on aarch64 and
* x86-64.
*/
#if !defined(MBEDTLS_SHA3_THETA_UNROLL)
#define MBEDTLS_SHA3_THETA_UNROLL 0 //no-check-names
#endif
#if !defined(MBEDTLS_SHA3_CHI_UNROLL)
#if defined(__OPTIMIZE_SIZE__)
#define MBEDTLS_SHA3_CHI_UNROLL 0 //no-check-names
#else
#define MBEDTLS_SHA3_CHI_UNROLL 1 //no-check-names
#endif
#endif
#if !defined(MBEDTLS_SHA3_PI_UNROLL)
#define MBEDTLS_SHA3_PI_UNROLL 1 //no-check-names
#endif
#if !defined(MBEDTLS_SHA3_RHO_UNROLL)
#define MBEDTLS_SHA3_RHO_UNROLL 1 //no-check-names
#endif
#include "mbedtls/sha3.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include <string.h>
#if defined(MBEDTLS_SELF_TEST)
#include "mbedtls/platform.h"
#endif /* MBEDTLS_SELF_TEST */
#define XOR_BYTE 0x6
/* Precomputed masks for the iota transform.
*
* Each round uses a 64-bit mask value. In each mask values, only
* bits whose position is of the form 2^k-1 can be set, thus only
* 7 of 64 bits of the mask need to be known for each mask value.
*
* We use a compressed encoding of the mask where bits 63, 31 and 15
* are moved to bits 4-6. This allows us to make each mask value
* 1 byte rather than 8 bytes, saving 7*24 = 168 bytes of data (with
* perhaps a little variation due to alignment). Decompressing this
* requires a little code, but much less than the savings on the table.
*
* The impact on performance depends on the platform and compiler.
* There's a bit more computation, but less memory bandwidth. A quick
* benchmark on x86_64 shows a 7% speed improvement with GCC and a
* 5% speed penalty with Clang, compared to the naive uint64_t[24] table.
* YMMV.
*/
/* Helper macro to set the values of the higher bits in unused low positions */
#define H(b63, b31, b15) (b63 << 6 | b31 << 5 | b15 << 4)
static const uint8_t iota_r_packed[24] = {
H(0, 0, 0) | 0x01, H(0, 0, 1) | 0x82, H(1, 0, 1) | 0x8a, H(1, 1, 1) | 0x00,
H(0, 0, 1) | 0x8b, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x09,
H(0, 0, 0) | 0x8a, H(0, 0, 0) | 0x88, H(0, 1, 1) | 0x09, H(0, 1, 0) | 0x0a,
H(0, 1, 1) | 0x8b, H(1, 0, 0) | 0x8b, H(1, 0, 1) | 0x89, H(1, 0, 1) | 0x03,
H(1, 0, 1) | 0x02, H(1, 0, 0) | 0x80, H(0, 0, 1) | 0x0a, H(1, 1, 0) | 0x0a,
H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x80, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x08,
};
#undef H
static const uint32_t rho[6] = {
0x3f022425, 0x1c143a09, 0x2c3d3615, 0x27191713, 0x312b382e, 0x3e030832
};
static const uint32_t pi[6] = {
0x110b070a, 0x10050312, 0x04181508, 0x0d13170f, 0x0e14020c, 0x01060916
};
#define ROTR64(x, y) (((x) << (64U - (y))) | ((x) >> (y))) // 64-bit rotate right
#define ABSORB(ctx, idx, v) do { ctx->state[(idx) >> 3] ^= ((uint64_t) (v)) << (((idx) & 0x7) << 3); \
} while (0)
#define SQUEEZE(ctx, idx) ((uint8_t) (ctx->state[(idx) >> 3] >> (((idx) & 0x7) << 3)))
#define SWAP(x, y) do { uint64_t tmp = (x); (x) = (y); (y) = tmp; } while (0)
/* The permutation function. */
static void keccak_f1600(mbedtls_sha3_context *ctx)
{
uint64_t lane[5];
uint64_t *s = ctx->state;
int i;
for (int round = 0; round < 24; round++) {
uint64_t t;
/* Theta */
#if MBEDTLS_SHA3_THETA_UNROLL == 0 //no-check-names
for (i = 0; i < 5; i++) {
lane[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];
}
for (i = 0; i < 5; i++) {
t = lane[(i + 4) % 5] ^ ROTR64(lane[(i + 1) % 5], 63);
s[i] ^= t; s[i + 5] ^= t; s[i + 10] ^= t; s[i + 15] ^= t; s[i + 20] ^= t;
}
#else
lane[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
lane[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
lane[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
lane[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
lane[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
t = lane[4] ^ ROTR64(lane[1], 63);
s[0] ^= t; s[5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t;
t = lane[0] ^ ROTR64(lane[2], 63);
s[1] ^= t; s[6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t;
t = lane[1] ^ ROTR64(lane[3], 63);
s[2] ^= t; s[7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t;
t = lane[2] ^ ROTR64(lane[4], 63);
s[3] ^= t; s[8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t;
t = lane[3] ^ ROTR64(lane[0], 63);
s[4] ^= t; s[9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t;
#endif
/* Rho */
for (i = 1; i < 25; i += 4) {
uint32_t r = rho[(i - 1) >> 2];
#if MBEDTLS_SHA3_RHO_UNROLL == 0
for (int j = i; j < i + 4; j++) {
uint8_t r8 = (uint8_t) (r >> 24);
r <<= 8;
s[j] = ROTR64(s[j], r8);
}
#else
s[i + 0] = ROTR64(s[i + 0], MBEDTLS_BYTE_3(r));
s[i + 1] = ROTR64(s[i + 1], MBEDTLS_BYTE_2(r));
s[i + 2] = ROTR64(s[i + 2], MBEDTLS_BYTE_1(r));
s[i + 3] = ROTR64(s[i + 3], MBEDTLS_BYTE_0(r));
#endif
}
/* Pi */
t = s[1];
#if MBEDTLS_SHA3_PI_UNROLL == 0
for (i = 0; i < 24; i += 4) {
uint32_t p = pi[i >> 2];
for (unsigned j = 0; j < 4; j++) {
SWAP(s[p & 0xff], t);
p >>= 8;
}
}
#else
uint32_t p = pi[0];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
p = pi[1];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
p = pi[2];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
p = pi[3];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
p = pi[4];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
p = pi[5];
SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
#endif
/* Chi */
#if MBEDTLS_SHA3_CHI_UNROLL == 0 //no-check-names
for (i = 0; i <= 20; i += 5) {
lane[0] = s[i]; lane[1] = s[i + 1]; lane[2] = s[i + 2];
lane[3] = s[i + 3]; lane[4] = s[i + 4];
s[i + 0] ^= (~lane[1]) & lane[2];
s[i + 1] ^= (~lane[2]) & lane[3];
s[i + 2] ^= (~lane[3]) & lane[4];
s[i + 3] ^= (~lane[4]) & lane[0];
s[i + 4] ^= (~lane[0]) & lane[1];
}
#else
lane[0] = s[0]; lane[1] = s[1]; lane[2] = s[2]; lane[3] = s[3]; lane[4] = s[4];
s[0] ^= (~lane[1]) & lane[2];
s[1] ^= (~lane[2]) & lane[3];
s[2] ^= (~lane[3]) & lane[4];
s[3] ^= (~lane[4]) & lane[0];
s[4] ^= (~lane[0]) & lane[1];
lane[0] = s[5]; lane[1] = s[6]; lane[2] = s[7]; lane[3] = s[8]; lane[4] = s[9];
s[5] ^= (~lane[1]) & lane[2];
s[6] ^= (~lane[2]) & lane[3];
s[7] ^= (~lane[3]) & lane[4];
s[8] ^= (~lane[4]) & lane[0];
s[9] ^= (~lane[0]) & lane[1];
lane[0] = s[10]; lane[1] = s[11]; lane[2] = s[12]; lane[3] = s[13]; lane[4] = s[14];
s[10] ^= (~lane[1]) & lane[2];
s[11] ^= (~lane[2]) & lane[3];
s[12] ^= (~lane[3]) & lane[4];
s[13] ^= (~lane[4]) & lane[0];
s[14] ^= (~lane[0]) & lane[1];
lane[0] = s[15]; lane[1] = s[16]; lane[2] = s[17]; lane[3] = s[18]; lane[4] = s[19];
s[15] ^= (~lane[1]) & lane[2];
s[16] ^= (~lane[2]) & lane[3];
s[17] ^= (~lane[3]) & lane[4];
s[18] ^= (~lane[4]) & lane[0];
s[19] ^= (~lane[0]) & lane[1];
lane[0] = s[20]; lane[1] = s[21]; lane[2] = s[22]; lane[3] = s[23]; lane[4] = s[24];
s[20] ^= (~lane[1]) & lane[2];
s[21] ^= (~lane[2]) & lane[3];
s[22] ^= (~lane[3]) & lane[4];
s[23] ^= (~lane[4]) & lane[0];
s[24] ^= (~lane[0]) & lane[1];
#endif
/* Iota */
/* Decompress the round masks (see definition of rc) */
s[0] ^= ((iota_r_packed[round] & 0x40ull) << 57 |
(iota_r_packed[round] & 0x20ull) << 26 |
(iota_r_packed[round] & 0x10ull) << 11 |
(iota_r_packed[round] & 0x8f));
}
}
void mbedtls_sha3_init(mbedtls_sha3_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_sha3_context));
}
void mbedtls_sha3_free(mbedtls_sha3_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha3_context));
}
void mbedtls_sha3_clone(mbedtls_sha3_context *dst,
const mbedtls_sha3_context *src)
{
*dst = *src;
}
/*
* SHA-3 context setup
*/
int mbedtls_sha3_starts(mbedtls_sha3_context *ctx, mbedtls_sha3_id id)
{
switch (id) {
case MBEDTLS_SHA3_224:
ctx->olen = 224 / 8;
ctx->max_block_size = 1152 / 8;
break;
case MBEDTLS_SHA3_256:
ctx->olen = 256 / 8;
ctx->max_block_size = 1088 / 8;
break;
case MBEDTLS_SHA3_384:
ctx->olen = 384 / 8;
ctx->max_block_size = 832 / 8;
break;
case MBEDTLS_SHA3_512:
ctx->olen = 512 / 8;
ctx->max_block_size = 576 / 8;
break;
default:
return MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
}
memset(ctx->state, 0, sizeof(ctx->state));
ctx->index = 0;
return 0;
}
/*
* SHA-3 process buffer
*/
int mbedtls_sha3_update(mbedtls_sha3_context *ctx,
const uint8_t *input,
size_t ilen)
{
if (ilen >= 8) {
// 8-byte align index
int align_bytes = 8 - (ctx->index % 8);
if (align_bytes) {
for (; align_bytes > 0; align_bytes--) {
ABSORB(ctx, ctx->index, *input++);
ilen--;
ctx->index++;
}
if ((ctx->index = ctx->index % ctx->max_block_size) == 0) {
keccak_f1600(ctx);
}
}
// process input in 8-byte chunks
while (ilen >= 8) {
ABSORB(ctx, ctx->index, MBEDTLS_GET_UINT64_LE(input, 0));
input += 8;
ilen -= 8;
if ((ctx->index = (ctx->index + 8) % ctx->max_block_size) == 0) {
keccak_f1600(ctx);
}
}
}
// handle remaining bytes
while (ilen-- > 0) {
ABSORB(ctx, ctx->index, *input++);
if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
keccak_f1600(ctx);
}
}
return 0;
}
int mbedtls_sha3_finish(mbedtls_sha3_context *ctx,
uint8_t *output, size_t olen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/* Catch SHA-3 families, with fixed output length */
if (ctx->olen > 0) {
if (ctx->olen > olen) {
ret = MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
goto exit;
}
olen = ctx->olen;
}
ABSORB(ctx, ctx->index, XOR_BYTE);
ABSORB(ctx, ctx->max_block_size - 1, 0x80);
keccak_f1600(ctx);
ctx->index = 0;
while (olen-- > 0) {
*output++ = SQUEEZE(ctx, ctx->index);
if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
keccak_f1600(ctx);
}
}
ret = 0;
exit:
mbedtls_sha3_free(ctx);
return ret;
}
/*
* output = SHA-3( input buffer )
*/
int mbedtls_sha3(mbedtls_sha3_id id, const uint8_t *input,
size_t ilen, uint8_t *output, size_t olen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_sha3_context ctx;
mbedtls_sha3_init(&ctx);
/* Sanity checks are performed in every mbedtls_sha3_xxx() */
if ((ret = mbedtls_sha3_starts(&ctx, id)) != 0) {
goto exit;
}
if ((ret = mbedtls_sha3_update(&ctx, input, ilen)) != 0) {
goto exit;
}
if ((ret = mbedtls_sha3_finish(&ctx, output, olen)) != 0) {
goto exit;
}
exit:
mbedtls_sha3_free(&ctx);
return ret;
}
/**************** Self-tests ****************/
#if defined(MBEDTLS_SELF_TEST)
static const unsigned char test_data[2][4] =
{
"",
"abc",
};
static const size_t test_data_len[2] =
{
0, /* "" */
3 /* "abc" */
};
static const unsigned char test_hash_sha3_224[2][28] =
{
{ /* "" */
0x6B, 0x4E, 0x03, 0x42, 0x36, 0x67, 0xDB, 0xB7,
0x3B, 0x6E, 0x15, 0x45, 0x4F, 0x0E, 0xB1, 0xAB,
0xD4, 0x59, 0x7F, 0x9A, 0x1B, 0x07, 0x8E, 0x3F,
0x5B, 0x5A, 0x6B, 0xC7
},
{ /* "abc" */
0xE6, 0x42, 0x82, 0x4C, 0x3F, 0x8C, 0xF2, 0x4A,
0xD0, 0x92, 0x34, 0xEE, 0x7D, 0x3C, 0x76, 0x6F,
0xC9, 0xA3, 0xA5, 0x16, 0x8D, 0x0C, 0x94, 0xAD,
0x73, 0xB4, 0x6F, 0xDF
}
};
static const unsigned char test_hash_sha3_256[2][32] =
{
{ /* "" */
0xA7, 0xFF, 0xC6, 0xF8, 0xBF, 0x1E, 0xD7, 0x66,
0x51, 0xC1, 0x47, 0x56, 0xA0, 0x61, 0xD6, 0x62,
0xF5, 0x80, 0xFF, 0x4D, 0xE4, 0x3B, 0x49, 0xFA,
0x82, 0xD8, 0x0A, 0x4B, 0x80, 0xF8, 0x43, 0x4A
},
{ /* "abc" */
0x3A, 0x98, 0x5D, 0xA7, 0x4F, 0xE2, 0x25, 0xB2,
0x04, 0x5C, 0x17, 0x2D, 0x6B, 0xD3, 0x90, 0xBD,
0x85, 0x5F, 0x08, 0x6E, 0x3E, 0x9D, 0x52, 0x5B,
0x46, 0xBF, 0xE2, 0x45, 0x11, 0x43, 0x15, 0x32
}
};
static const unsigned char test_hash_sha3_384[2][48] =
{
{ /* "" */
0x0C, 0x63, 0xA7, 0x5B, 0x84, 0x5E, 0x4F, 0x7D,
0x01, 0x10, 0x7D, 0x85, 0x2E, 0x4C, 0x24, 0x85,
0xC5, 0x1A, 0x50, 0xAA, 0xAA, 0x94, 0xFC, 0x61,
0x99, 0x5E, 0x71, 0xBB, 0xEE, 0x98, 0x3A, 0x2A,
0xC3, 0x71, 0x38, 0x31, 0x26, 0x4A, 0xDB, 0x47,
0xFB, 0x6B, 0xD1, 0xE0, 0x58, 0xD5, 0xF0, 0x04
},
{ /* "abc" */
0xEC, 0x01, 0x49, 0x82, 0x88, 0x51, 0x6F, 0xC9,
0x26, 0x45, 0x9F, 0x58, 0xE2, 0xC6, 0xAD, 0x8D,
0xF9, 0xB4, 0x73, 0xCB, 0x0F, 0xC0, 0x8C, 0x25,
0x96, 0xDA, 0x7C, 0xF0, 0xE4, 0x9B, 0xE4, 0xB2,
0x98, 0xD8, 0x8C, 0xEA, 0x92, 0x7A, 0xC7, 0xF5,
0x39, 0xF1, 0xED, 0xF2, 0x28, 0x37, 0x6D, 0x25
}
};
static const unsigned char test_hash_sha3_512[2][64] =
{
{ /* "" */
0xA6, 0x9F, 0x73, 0xCC, 0xA2, 0x3A, 0x9A, 0xC5,
0xC8, 0xB5, 0x67, 0xDC, 0x18, 0x5A, 0x75, 0x6E,
0x97, 0xC9, 0x82, 0x16, 0x4F, 0xE2, 0x58, 0x59,
0xE0, 0xD1, 0xDC, 0xC1, 0x47, 0x5C, 0x80, 0xA6,
0x15, 0xB2, 0x12, 0x3A, 0xF1, 0xF5, 0xF9, 0x4C,
0x11, 0xE3, 0xE9, 0x40, 0x2C, 0x3A, 0xC5, 0x58,
0xF5, 0x00, 0x19, 0x9D, 0x95, 0xB6, 0xD3, 0xE3,
0x01, 0x75, 0x85, 0x86, 0x28, 0x1D, 0xCD, 0x26
},
{ /* "abc" */
0xB7, 0x51, 0x85, 0x0B, 0x1A, 0x57, 0x16, 0x8A,
0x56, 0x93, 0xCD, 0x92, 0x4B, 0x6B, 0x09, 0x6E,
0x08, 0xF6, 0x21, 0x82, 0x74, 0x44, 0xF7, 0x0D,
0x88, 0x4F, 0x5D, 0x02, 0x40, 0xD2, 0x71, 0x2E,
0x10, 0xE1, 0x16, 0xE9, 0x19, 0x2A, 0xF3, 0xC9,
0x1A, 0x7E, 0xC5, 0x76, 0x47, 0xE3, 0x93, 0x40,
0x57, 0x34, 0x0B, 0x4C, 0xF4, 0x08, 0xD5, 0xA5,
0x65, 0x92, 0xF8, 0x27, 0x4E, 0xEC, 0x53, 0xF0
}
};
static const unsigned char long_kat_hash_sha3_224[28] =
{
0xD6, 0x93, 0x35, 0xB9, 0x33, 0x25, 0x19, 0x2E,
0x51, 0x6A, 0x91, 0x2E, 0x6D, 0x19, 0xA1, 0x5C,
0xB5, 0x1C, 0x6E, 0xD5, 0xC1, 0x52, 0x43, 0xE7,
0xA7, 0xFD, 0x65, 0x3C
};
static const unsigned char long_kat_hash_sha3_256[32] =
{
0x5C, 0x88, 0x75, 0xAE, 0x47, 0x4A, 0x36, 0x34,
0xBA, 0x4F, 0xD5, 0x5E, 0xC8, 0x5B, 0xFF, 0xD6,
0x61, 0xF3, 0x2A, 0xCA, 0x75, 0xC6, 0xD6, 0x99,
0xD0, 0xCD, 0xCB, 0x6C, 0x11, 0x58, 0x91, 0xC1
};
static const unsigned char long_kat_hash_sha3_384[48] =
{
0xEE, 0xE9, 0xE2, 0x4D, 0x78, 0xC1, 0x85, 0x53,
0x37, 0x98, 0x34, 0x51, 0xDF, 0x97, 0xC8, 0xAD,
0x9E, 0xED, 0xF2, 0x56, 0xC6, 0x33, 0x4F, 0x8E,
0x94, 0x8D, 0x25, 0x2D, 0x5E, 0x0E, 0x76, 0x84,
0x7A, 0xA0, 0x77, 0x4D, 0xDB, 0x90, 0xA8, 0x42,
0x19, 0x0D, 0x2C, 0x55, 0x8B, 0x4B, 0x83, 0x40
};
static const unsigned char long_kat_hash_sha3_512[64] =
{
0x3C, 0x3A, 0x87, 0x6D, 0xA1, 0x40, 0x34, 0xAB,
0x60, 0x62, 0x7C, 0x07, 0x7B, 0xB9, 0x8F, 0x7E,
0x12, 0x0A, 0x2A, 0x53, 0x70, 0x21, 0x2D, 0xFF,
0xB3, 0x38, 0x5A, 0x18, 0xD4, 0xF3, 0x88, 0x59,
0xED, 0x31, 0x1D, 0x0A, 0x9D, 0x51, 0x41, 0xCE,
0x9C, 0xC5, 0xC6, 0x6E, 0xE6, 0x89, 0xB2, 0x66,
0xA8, 0xAA, 0x18, 0xAC, 0xE8, 0x28, 0x2A, 0x0E,
0x0D, 0xB5, 0x96, 0xC9, 0x0B, 0x0A, 0x7B, 0x87
};
static int mbedtls_sha3_kat_test(int verbose,
const char *type_name,
mbedtls_sha3_id id,
int test_num)
{
uint8_t hash[64];
int result;
result = mbedtls_sha3(id,
test_data[test_num], test_data_len[test_num],
hash, sizeof(hash));
if (result != 0) {
if (verbose != 0) {
mbedtls_printf(" %s test %d error code: %d\n",
type_name, test_num, result);
}
return result;
}
switch (id) {
case MBEDTLS_SHA3_224:
result = memcmp(hash, test_hash_sha3_224[test_num], 28);
break;
case MBEDTLS_SHA3_256:
result = memcmp(hash, test_hash_sha3_256[test_num], 32);
break;
case MBEDTLS_SHA3_384:
result = memcmp(hash, test_hash_sha3_384[test_num], 48);
break;
case MBEDTLS_SHA3_512:
result = memcmp(hash, test_hash_sha3_512[test_num], 64);
break;
default:
break;
}
if (0 != result) {
if (verbose != 0) {
mbedtls_printf(" %s test %d failed\n", type_name, test_num);
}
return -1;
}
if (verbose != 0) {
mbedtls_printf(" %s test %d passed\n", type_name, test_num);
}
return 0;
}
static int mbedtls_sha3_long_kat_test(int verbose,
const char *type_name,
mbedtls_sha3_id id)
{
mbedtls_sha3_context ctx;
unsigned char buffer[1000];
unsigned char hash[64];
int result = 0;
memset(buffer, 'a', 1000);
if (verbose != 0) {
mbedtls_printf(" %s long KAT test ", type_name);
}
mbedtls_sha3_init(&ctx);
result = mbedtls_sha3_starts(&ctx, id);
if (result != 0) {
if (verbose != 0) {
mbedtls_printf("setup failed\n ");
}
}
/* Process 1,000,000 (one million) 'a' characters */
for (int i = 0; i < 1000; i++) {
result = mbedtls_sha3_update(&ctx, buffer, 1000);
if (result != 0) {
if (verbose != 0) {
mbedtls_printf("update error code: %i\n", result);
}
goto cleanup;
}
}
result = mbedtls_sha3_finish(&ctx, hash, sizeof(hash));
if (result != 0) {
if (verbose != 0) {
mbedtls_printf("finish error code: %d\n", result);
}
goto cleanup;
}
switch (id) {
case MBEDTLS_SHA3_224:
result = memcmp(hash, long_kat_hash_sha3_224, 28);
break;
case MBEDTLS_SHA3_256:
result = memcmp(hash, long_kat_hash_sha3_256, 32);
break;
case MBEDTLS_SHA3_384:
result = memcmp(hash, long_kat_hash_sha3_384, 48);
break;
case MBEDTLS_SHA3_512:
result = memcmp(hash, long_kat_hash_sha3_512, 64);
break;
default:
break;
}
if (result != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
cleanup:
mbedtls_sha3_free(&ctx);
return result;
}
int mbedtls_sha3_self_test(int verbose)
{
int i;
/* SHA-3 Known Answer Tests (KAT) */
for (i = 0; i < 2; i++) {
if (0 != mbedtls_sha3_kat_test(verbose,
"SHA3-224", MBEDTLS_SHA3_224, i)) {
return 1;
}
if (0 != mbedtls_sha3_kat_test(verbose,
"SHA3-256", MBEDTLS_SHA3_256, i)) {
return 1;
}
if (0 != mbedtls_sha3_kat_test(verbose,
"SHA3-384", MBEDTLS_SHA3_384, i)) {
return 1;
}
if (0 != mbedtls_sha3_kat_test(verbose,
"SHA3-512", MBEDTLS_SHA3_512, i)) {
return 1;
}
}
/* SHA-3 long KAT tests */
if (0 != mbedtls_sha3_long_kat_test(verbose,
"SHA3-224", MBEDTLS_SHA3_224)) {
return 1;
}
if (0 != mbedtls_sha3_long_kat_test(verbose,
"SHA3-256", MBEDTLS_SHA3_256)) {
return 1;
}
if (0 != mbedtls_sha3_long_kat_test(verbose,
"SHA3-384", MBEDTLS_SHA3_384)) {
return 1;
}
if (0 != mbedtls_sha3_long_kat_test(verbose,
"SHA3-512", MBEDTLS_SHA3_512)) {
return 1;
}
if (verbose != 0) {
mbedtls_printf("\n");
}
return 0;
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_SHA3_C */