mbedtls/library/bignum_core.c
Janos Follath e0842aa751 Add tests for optionally safe codepaths
The new test hooks allow to check whether there was an unsafe call of an
optionally safe function in the codepath. For the sake of simplicity the
MBEDTLS_MPI_IS_* macros are reused for signalling safe/unsafe codepaths
here too.

Signed-off-by: Janos Follath <janos.follath@arm.com>
2024-08-13 08:40:31 +01:00

1006 lines
32 KiB
C

/*
* Core bignum functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include <string.h>
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#include "constant_time_internal.h"
#include "mbedtls/platform.h"
#include "bignum_core.h"
#include "bn_mul.h"
#include "constant_time_internal.h"
size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
{
#if defined(__has_builtin)
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
#define core_clz __builtin_clz
#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
#define core_clz __builtin_clzl
#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
#define core_clz __builtin_clzll
#endif
#endif
#if defined(core_clz)
return (size_t) core_clz(a);
#else
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for (j = 0; j < biL; j++) {
if (a & mask) {
break;
}
mask >>= 1;
}
return j;
#endif
}
size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
{
int i;
size_t j;
for (i = ((int) A_limbs) - 1; i >= 0; i--) {
if (A[i] != 0) {
j = biL - mbedtls_mpi_core_clz(A[i]);
return (i * biL) + j;
}
}
return 0;
}
static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
{
if (MBEDTLS_IS_BIG_ENDIAN) {
/* Nothing to do on bigendian systems. */
return a;
} else {
#if defined(MBEDTLS_HAVE_INT32)
return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
#elif defined(MBEDTLS_HAVE_INT64)
return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
#endif
}
}
void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
size_t A_limbs)
{
mbedtls_mpi_uint *cur_limb_left;
mbedtls_mpi_uint *cur_limb_right;
if (A_limbs == 0) {
return;
}
/*
* Traverse limbs and
* - adapt byte-order in each limb
* - swap the limbs themselves.
* For that, simultaneously traverse the limbs from left to right
* and from right to left, as long as the left index is not bigger
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right--) {
mbedtls_mpi_uint tmp;
/* Note that if cur_limb_left == cur_limb_right,
* this code effectively swaps the bytes only once. */
tmp = mpi_bigendian_to_host(*cur_limb_left);
*cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
*cur_limb_right = tmp;
}
}
/* Whether min <= A, in constant time.
* A_limbs must be at least 1. */
mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
const mbedtls_mpi_uint *A,
size_t A_limbs)
{
/* min <= least significant limb? */
mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
/* limbs other than the least significant one are all zero? */
mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
for (size_t i = 1; i < A_limbs; i++) {
msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
}
/* min <= A iff the lowest limb of A is >= min or the other limbs
* are not all zero. */
return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
}
mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
for (size_t i = limbs; i > 0; i--) {
/*
* If B[i - 1] < A[i - 1] then A < B is false and the result must
* remain 0.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
done = mbedtls_ct_bool_or(done, cond);
/*
* If A[i - 1] < B[i - 1] then A < B is true.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
done = mbedtls_ct_bool_or(done, cond);
}
/*
* If all the limbs were equal, then the numbers are equal, A < B is false
* and leaving the result 0 is correct.
*/
return ret;
}
void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
mbedtls_ct_condition_t assign)
{
if (X == A) {
return;
}
/* This function is very performance-sensitive for RSA. For this reason
* we have the loop below, instead of calling mbedtls_ct_memcpy_if
* (this is more optimal since here we don't have to handle the case where
* we copy awkwardly sized data).
*/
for (size_t i = 0; i < limbs; i++) {
X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
}
}
void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
mbedtls_mpi_uint *Y,
size_t limbs,
mbedtls_ct_condition_t swap)
{
if (X == Y) {
return;
}
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint tmp = X[i];
X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
}
}
int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length)
{
const size_t limbs = CHARS_TO_LIMBS(input_length);
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
if (X != NULL) {
memset(X, 0, X_limbs * ciL);
for (size_t i = 0; i < input_length; i++) {
size_t offset = ((i % ciL) << 3);
X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
}
}
return 0;
}
int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length)
{
const size_t limbs = CHARS_TO_LIMBS(input_length);
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
/* If X_limbs is 0, input_length must also be 0 (from previous test).
* Nothing to do. */
if (X_limbs == 0) {
return 0;
}
memset(X, 0, X_limbs * ciL);
/* memcpy() with (NULL, 0) is undefined behaviour */
if (input_length != 0) {
size_t overhead = (X_limbs * ciL) - input_length;
unsigned char *Xp = (unsigned char *) X;
memcpy(Xp + overhead, input, input_length);
}
mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
return 0;
}
int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length)
{
size_t stored_bytes = A_limbs * ciL;
size_t bytes_to_copy;
if (stored_bytes < output_length) {
bytes_to_copy = stored_bytes;
} else {
bytes_to_copy = output_length;
/* The output buffer is smaller than the allocated size of A.
* However A may fit if its leading bytes are zero. */
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
if (GET_BYTE(A, i) != 0) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
}
}
for (size_t i = 0; i < bytes_to_copy; i++) {
output[i] = GET_BYTE(A, i);
}
if (stored_bytes < output_length) {
/* Write trailing 0 bytes */
memset(output + stored_bytes, 0, output_length - stored_bytes);
}
return 0;
}
int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
size_t X_limbs,
unsigned char *output,
size_t output_length)
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
stored_bytes = X_limbs * ciL;
if (stored_bytes < output_length) {
/* There is enough space in the output buffer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = output + output_length - stored_bytes;
memset(output, 0, output_length - stored_bytes);
} else {
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = output_length;
p = output;
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
if (GET_BYTE(X, i) != 0) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
}
}
for (size_t i = 0; i < bytes_to_copy; i++) {
p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
}
return 0;
}
void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
size_t count)
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / biL;
v1 = count & (biL - 1);
if (v0 > limbs || (v0 == limbs && v1 > 0)) {
memset(X, 0, limbs * ciL);
return;
}
/*
* shift by count / limb_size
*/
if (v0 > 0) {
for (i = 0; i < limbs - v0; i++) {
X[i] = X[i + v0];
}
for (; i < limbs; i++) {
X[i] = 0;
}
}
/*
* shift by count % limb_size
*/
if (v1 > 0) {
for (i = limbs; i > 0; i--) {
r1 = X[i - 1] << (biL - v1);
X[i - 1] >>= v1;
X[i - 1] |= r0;
r0 = r1;
}
}
}
void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
size_t count)
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / (biL);
v1 = count & (biL - 1);
/*
* shift by count / limb_size
*/
if (v0 > 0) {
for (i = limbs; i > v0; i--) {
X[i - 1] = X[i - v0 - 1];
}
for (; i > 0; i--) {
X[i - 1] = 0;
}
}
/*
* shift by count % limb_size
*/
if (v1 > 0) {
for (i = v0; i < limbs; i++) {
r1 = X[i] >> (biL - v1);
X[i] <<= v1;
X[i] |= r0;
r0 = r1;
}
}
}
mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_mpi_uint c = 0;
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint t = c + A[i];
c = (t < A[i]);
t += B[i];
c += (t < B[i]);
X[i] = t;
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned cond)
{
mbedtls_mpi_uint c = 0;
mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
mbedtls_mpi_uint t = c + X[i];
c = (t < X[i]);
t += add;
c += (t < add);
X[i] = t;
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_mpi_uint c = 0;
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint z = (A[i] < c);
mbedtls_mpi_uint t = A[i] - c;
c = (t < B[i]) + z;
X[i] = t - B[i];
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b)
{
mbedtls_mpi_uint c = 0; /* carry */
/*
* It is a documented precondition of this function that d_len >= s_len.
* If that's not the case, we swap these round: this turns what would be
* a buffer overflow into an incorrect result.
*/
if (d_len < s_len) {
s_len = d_len;
}
size_t excess_len = d_len - s_len;
size_t steps_x8 = s_len / 8;
size_t steps_x1 = s_len & 7;
while (steps_x8--) {
MULADDC_X8_INIT
MULADDC_X8_CORE
MULADDC_X8_STOP
}
while (steps_x1--) {
MULADDC_X1_INIT
MULADDC_X1_CORE
MULADDC_X1_STOP
}
while (excess_len--) {
*d += c;
c = (*d < c);
d++;
}
return c;
}
void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A, size_t A_limbs,
const mbedtls_mpi_uint *B, size_t B_limbs)
{
memset(X, 0, (A_limbs + B_limbs) * ciL);
for (size_t i = 0; i < B_limbs; i++) {
(void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
}
}
/*
* Fast Montgomery initialization (thanks to Tom St Denis).
*/
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
{
mbedtls_mpi_uint x = N[0];
x += ((N[0] + 2) & 4) << 1;
for (unsigned int i = biL; i >= 8; i /= 2) {
x *= (2 - (N[0] * x));
}
return ~x + 1;
}
void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_limbs,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T)
{
memset(T, 0, (2 * AN_limbs + 1) * ciL);
for (size_t i = 0; i < AN_limbs; i++) {
/* T = (T + u0*B + u1*N) / 2^biL */
mbedtls_mpi_uint u0 = A[i];
mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
T++;
}
/*
* The result we want is (T >= N) ? T - N : T.
*
* For better constant-time properties in this function, we always do the
* subtraction, with the result in X.
*
* We also look to see if there was any carry in the final additions in the
* loop above.
*/
mbedtls_mpi_uint carry = T[AN_limbs];
mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
/*
* Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
*
* T can be in one of 3 ranges:
*
* 1) T < N : (carry, borrow) = (0, 1): we want T
* 2) N <= T < R : (carry, borrow) = (0, 0): we want X
* 3) T >= R : (carry, borrow) = (1, 1): we want X
*
* and (carry, borrow) = (1, 0) can't happen.
*
* So the correct return value is already in X if (carry ^ borrow) = 0,
* but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
*/
mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
(unsigned char *) X,
(unsigned char *) T,
NULL,
AN_limbs * sizeof(mbedtls_mpi_uint));
}
int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
const mbedtls_mpi *N)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
cleanup:
return ret;
}
MBEDTLS_STATIC_TESTABLE
void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
const mbedtls_mpi_uint *table,
size_t limbs,
size_t count,
size_t index)
{
for (size_t i = 0; i < count; i++, table += limbs) {
mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
}
}
/* Fill X with n_bytes random bytes.
* X must already have room for those bytes.
* The ordering of the bytes returned from the RNG is suitable for
* deterministic ECDSA (see RFC 6979 §3.3 and the specification of
* mbedtls_mpi_core_random()).
*/
int mbedtls_mpi_core_fill_random(
mbedtls_mpi_uint *X, size_t X_limbs,
size_t n_bytes,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const size_t limbs = CHARS_TO_LIMBS(n_bytes);
const size_t overhead = (limbs * ciL) - n_bytes;
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
memset(X, 0, overhead);
memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
mbedtls_mpi_core_bigendian_to_host(X, limbs);
cleanup:
return ret;
}
int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
mbedtls_mpi_uint min,
const mbedtls_mpi_uint *N,
size_t limbs,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
size_t n_bytes = (n_bits + 7) / 8;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/*
* When min == 0, each try has at worst a probability 1/2 of failing
* (the msb has a probability 1/2 of being 0, and then the result will
* be < N), so after 30 tries failure probability is a most 2**(-30).
*
* When N is just below a power of 2, as is the case when generating
* a random scalar on most elliptic curves, 1 try is enough with
* overwhelming probability. When N is just above a power of 2,
* as when generating a random scalar on secp224k1, each try has
* a probability of failing that is almost 1/2.
*
* The probabilities are almost the same if min is nonzero but negligible
* compared to N. This is always the case when N is crypto-sized, but
* it's convenient to support small N for testing purposes. When N
* is small, use a higher repeat count, otherwise the probability of
* failure is macroscopic.
*/
int count = (n_bytes > 4 ? 30 : 250);
/*
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
* - use the same byte ordering;
* - keep the leftmost n_bits bits of the generated octet string;
* - try until result is in the desired range.
* This also avoids any bias, which is especially important for ECDSA.
*/
do {
MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
n_bytes,
f_rng, p_rng));
mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
if (--count == 0) {
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
} while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
cleanup:
return ret;
}
static size_t exp_mod_get_window_size(size_t Ebits)
{
#if MBEDTLS_MPI_WINDOW_SIZE >= 6
return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
#elif MBEDTLS_MPI_WINDOW_SIZE == 5
return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
#elif MBEDTLS_MPI_WINDOW_SIZE > 1
return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
#else
(void) Ebits;
return 1;
#endif
}
size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
{
const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
const size_t welem = ((size_t) 1) << wsize;
/* How big does each part of the working memory pool need to be? */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
const size_t temp_limbs = 2 * AN_limbs + 1;
return table_limbs + select_limbs + temp_limbs;
}
static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *RR,
size_t welem,
mbedtls_mpi_uint *Wtable,
mbedtls_mpi_uint *temp)
{
/* W[0] = 1 (in Montgomery presentation) */
memset(Wtable, 0, AN_limbs * ciL);
Wtable[0] = 1;
mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
/* W[1] = A (already in Montgomery presentation) */
mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
memcpy(W1, A, AN_limbs * ciL);
/* W[i+1] = W[i] * W[1], i >= 2 */
mbedtls_mpi_uint *Wprev = W1;
for (size_t i = 2; i < welem; i++) {
mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
Wprev = Wcur;
}
}
/*
* This function calculates the indices of the exponent where the exponentiation algorithm should
* start processing.
*
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
* this function is not constant time with respect to the exponent (parameter E).
*/
static inline void exp_mod_calc_first_bit_optionally_safe(const mbedtls_mpi_uint *E,
size_t E_limbs,
int E_public,
size_t *E_limb_index,
size_t *E_bit_index)
{
if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
size_t E_bits = mbedtls_mpi_core_bitlen(E, E_limbs);
if (E_bits != 0) {
*E_limb_index = E_bits / biL;
*E_bit_index = E_bits % biL;
}
#if defined(MBEDTLS_TEST_HOOKS)
mbedtls_mpi_optionally_safe_codepath = MBEDTLS_MPI_IS_PUBLIC;
#endif
} else {
/*
* Here we need to be constant time with respect to E and can't do anything better than
* start at the first allocated bit.
*/
*E_limb_index = E_limbs;
*E_bit_index = 0;
#if defined(MBEDTLS_TEST_HOOKS)
// Only mark the codepath safe if there wasn't an unsafe codepath before
if (mbedtls_mpi_optionally_safe_codepath != MBEDTLS_MPI_IS_PUBLIC) {
mbedtls_mpi_optionally_safe_codepath = MBEDTLS_MPI_IS_SECRET;
}
#endif
}
}
/*
* Warning! If the parameter window_public has MBEDTLS_MPI_IS_PUBLIC as its value, this function is
* not constant time with respect to the window parameter and consequently the exponent of the
* exponentiation (parameter E of mbedtls_mpi_core_exp_mod_optionally_safe).
*/
static inline void exp_mod_table_lookup_optionally_safe(mbedtls_mpi_uint *Wselect,
mbedtls_mpi_uint *Wtable,
size_t AN_limbs, size_t welem,
mbedtls_mpi_uint window,
int window_public)
{
if (window_public == MBEDTLS_MPI_IS_PUBLIC) {
memcpy(Wselect, Wtable + window * AN_limbs, AN_limbs * ciL);
#if defined(MBEDTLS_TEST_HOOKS)
mbedtls_mpi_optionally_safe_codepath = MBEDTLS_MPI_IS_PUBLIC;
#endif
} else {
/* Select Wtable[window] without leaking window through
* memory access patterns. */
mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
AN_limbs, welem, window);
#if defined(MBEDTLS_TEST_HOOKS)
// Only mark the codepath safe if there wasn't an unsafe codepath before
if (mbedtls_mpi_optionally_safe_codepath != MBEDTLS_MPI_IS_PUBLIC) {
mbedtls_mpi_optionally_safe_codepath = MBEDTLS_MPI_IS_SECRET;
}
#endif
}
}
/* Exponentiation: X := A^E mod N.
*
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
* this function is not constant time with respect to the exponent (parameter E).
*
* A must already be in Montgomery form.
*
* As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
*
* RR must contain 2^{2*biL} mod N.
*
* The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
* (The difference is that the body in our loop processes a single bit instead
* of a full window.)
*/
static void mbedtls_mpi_core_exp_mod_optionally_safe(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
const mbedtls_mpi_uint *E,
size_t E_limbs,
int E_public,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
/* We'll process the bits of E from most significant
* (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
* (limb_index=0, E_bit_index=0). */
size_t E_limb_index = E_limbs;
size_t E_bit_index = 0;
exp_mod_calc_first_bit_optionally_safe(E, E_limbs, E_public,
&E_limb_index, &E_bit_index);
const size_t wsize = exp_mod_get_window_size(E_limb_index * biL);
const size_t welem = ((size_t) 1) << wsize;
/* This is how we will use the temporary storage T, which must have space
* for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
/* Pointers to specific parts of the temporary working memory pool */
mbedtls_mpi_uint *const Wtable = T;
mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
mbedtls_mpi_uint *const temp = Wselect + select_limbs;
/*
* Window precomputation
*/
const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
/* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
exp_mod_precompute_window(A, N, AN_limbs,
mm, RR,
welem, Wtable, temp);
/*
* Fixed window exponentiation
*/
/* X = 1 (in Montgomery presentation) initially */
memcpy(X, Wtable, AN_limbs * ciL);
/* At any given time, window contains window_bits bits from E.
* window_bits can go up to wsize. */
size_t window_bits = 0;
mbedtls_mpi_uint window = 0;
do {
/* Square */
mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
/* Move to the next bit of the exponent */
if (E_bit_index == 0) {
--E_limb_index;
E_bit_index = biL - 1;
} else {
--E_bit_index;
}
/* Insert next exponent bit into window */
++window_bits;
window <<= 1;
window |= (E[E_limb_index] >> E_bit_index) & 1;
/* Clear window if it's full. Also clear the window at the end,
* when we've finished processing the exponent. */
if (window_bits == wsize ||
(E_bit_index == 0 && E_limb_index == 0)) {
exp_mod_table_lookup_optionally_safe(Wselect, Wtable, AN_limbs, welem,
window, E_public);
/* Multiply X by the selected element. */
mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
temp);
window = 0;
window_bits = 0;
}
} while (!(E_bit_index == 0 && E_limb_index == 0));
}
void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N, size_t AN_limbs,
const mbedtls_mpi_uint *E, size_t E_limbs,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_exp_mod_optionally_safe(X,
A,
N,
AN_limbs,
E,
E_limbs,
MBEDTLS_MPI_IS_SECRET,
RR,
T);
}
void mbedtls_mpi_core_exp_mod_unsafe(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N, size_t AN_limbs,
const mbedtls_mpi_uint *E, size_t E_limbs,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_exp_mod_optionally_safe(X,
A,
N,
AN_limbs,
E,
E_limbs,
MBEDTLS_MPI_IS_PUBLIC,
RR,
T);
}
mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
mbedtls_mpi_uint c, /* doubles as carry */
size_t limbs)
{
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint s = A[i];
mbedtls_mpi_uint t = s - c;
c = (t > s);
X[i] = t;
}
return c;
}
mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
size_t limbs)
{
volatile const mbedtls_mpi_uint *force_read_A = A;
mbedtls_mpi_uint bits = 0;
for (size_t i = 0; i < limbs; i++) {
bits |= force_read_A[i];
}
return mbedtls_ct_bool(bits);
}
void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *rr,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
}
void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T)
{
const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
}
#endif /* MBEDTLS_BIGNUM_C */