mbedtls/library/aesni.c
2013-12-30 13:54:23 +01:00

434 lines
17 KiB
C

/*
* AES-NI support functions
*
* Copyright (C) 2013, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
* [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/
*/
#include "polarssl/config.h"
#if defined(POLARSSL_AESNI_C)
#include "polarssl/aesni.h"
#include <stdio.h>
#if defined(POLARSSL_HAVE_X86_64)
/*
* AES-NI support detection routine
*/
int aesni_supports( unsigned int what )
{
static int done = 0;
static unsigned int c = 0;
if( ! done )
{
asm( "movl $1, %%eax \n"
"cpuid \n"
: "=c" (c)
:
: "eax", "ebx", "edx" );
done = 1;
}
return( ( c & what ) != 0 );
}
/*
* AES-NI AES-ECB block en(de)cryption
*/
int aesni_crypt_ecb( aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16] )
{
asm( "movdqu (%3), %%xmm0 \n" // load input
"movdqu (%1), %%xmm1 \n" // load round key 0
"pxor %%xmm1, %%xmm0 \n" // round 0
"addq $16, %1 \n" // point to next round key
"subl $1, %0 \n" // normal rounds = nr - 1
"test %2, %2 \n" // mode?
"jz 2f \n" // 0 = decrypt
"1: \n" // encryption loop
"movdqu (%1), %%xmm1 \n" // load round key
"aesenc %%xmm1, %%xmm0 \n" // do round
"addq $16, %1 \n" // point to next round key
"subl $1, %0 \n" // loop
"jnz 1b \n"
"movdqu (%1), %%xmm1 \n" // load round key
"aesenclast %%xmm1, %%xmm0 \n" // last round
"jmp 3f \n"
"2: \n" // decryption loop
"movdqu (%1), %%xmm1 \n"
"aesdec %%xmm1, %%xmm0 \n"
"addq $16, %1 \n"
"subl $1, %0 \n"
"jnz 2b \n"
"movdqu (%1), %%xmm1 \n" // load round key
"aesdeclast %%xmm1, %%xmm0 \n" // last round
"3: \n"
"movdqu %%xmm0, (%4) \n" // export output
:
: "r" (ctx->nr), "r" (ctx->rk), "r" (mode), "r" (input), "r" (output)
: "memory", "cc", "xmm0", "xmm1" );
return( 0 );
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
void aesni_gcm_mult( unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16] )
{
unsigned char aa[16], bb[16], cc[16];
size_t i;
/* The inputs are in big-endian order, so byte-reverse them */
for( i = 0; i < 16; i++ )
{
aa[i] = a[15 - i];
bb[i] = b[15 - i];
}
asm( "movdqu (%0), %%xmm0 \n" // a1:a0
"movdqu (%1), %%xmm1 \n" // b1:b0
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 13).
*/
"movdqa %%xmm1, %%xmm2 \n" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n" // same
"movdqa %%xmm1, %%xmm4 \n" // same
"pclmulqdq $0x00, %%xmm0, %%xmm1 \n" // a0*b0 = c1:c0
"pclmulqdq $0x11, %%xmm0, %%xmm2 \n" // a1*b1 = d1:d0
"pclmulqdq $0x10, %%xmm0, %%xmm3 \n" // a0*b1 = e1:e0
"pclmulqdq $0x01, %%xmm0, %%xmm4 \n" // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n" // same
"psrldq $8, %%xmm4 \n" // 0:e1+f1
"pslldq $8, %%xmm3 \n" // e0+f0:0
"pxor %%xmm4, %%xmm2 \n" // d1:d0+e1+f1
"pxor %%xmm3, %%xmm1 \n" // c1+e0+f1:c0
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 20)
*/
"movdqa %%xmm1, %%xmm3 \n" // r1:r0
"movdqa %%xmm2, %%xmm4 \n" // r3:r2
"psllq $1, %%xmm1 \n" // r1<<1:r0<<1
"psllq $1, %%xmm2 \n" // r3<<1:r2<<1
"psrlq $63, %%xmm3 \n" // r1>>63:r0>>63
"psrlq $63, %%xmm4 \n" // r3>>63:r2>>63
"movdqa %%xmm3, %%xmm5 \n" // r1>>63:r0>>63
"pslldq $8, %%xmm3 \n" // r0>>63:0
"pslldq $8, %%xmm4 \n" // r2>>63:0
"psrldq $8, %%xmm5 \n" // 0:r1>>63
"por %%xmm3, %%xmm1 \n" // r1<<1|r0>>63:r0<<1
"por %%xmm4, %%xmm2 \n" // r3<<1|r2>>62:r2<<1
"por %%xmm5, %%xmm2 \n" // r3<<1|r2>>62:r2<<1|r1>>63
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 20).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
"movdqa %%xmm1, %%xmm3 \n" // x1:x0
"movdqa %%xmm1, %%xmm4 \n" // same
"movdqa %%xmm1, %%xmm5 \n" // same
"psllq $63, %%xmm3 \n" // x1<<63:x0<<63 = stuff:a
"psllq $62, %%xmm4 \n" // x1<<62:x0<<62 = stuff:b
"psllq $57, %%xmm5 \n" // x1<<57:x0<<57 = stuff:c
/* Step 2 (2) */
"pxor %%xmm4, %%xmm3 \n" // stuff:a+b
"pxor %%xmm5, %%xmm3 \n" // stuff:a+b+c
"pslldq $8, %%xmm3 \n" // a+b+c:0
"pxor %%xmm3, %%xmm1 \n" // x1+a+b+c:x0 = d:x0
/* Steps 3 and 4 */
"movdqa %%xmm1,%%xmm0 \n" // d:x0
"movdqa %%xmm1,%%xmm4 \n" // same
"movdqa %%xmm1,%%xmm5 \n" // same
"psrlq $1, %%xmm0 \n" // e1:x0>>1 = e1:e0'
"psrlq $2, %%xmm4 \n" // f1:x0>>2 = f1:f0'
"psrlq $7, %%xmm5 \n" // g1:x0>>7 = g1:g0'
"pxor %%xmm4, %%xmm0 \n" // e1+f1:e0'+f0'
"pxor %%xmm5, %%xmm0 \n" // e1+f1+g1:e0'+f0'+g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
"movdqa %%xmm1,%%xmm3 \n" // d:x0
"movdqa %%xmm1,%%xmm4 \n" // same
"movdqa %%xmm1,%%xmm5 \n" // same
"psllq $63, %%xmm3 \n" // d<<63:stuff
"psllq $62, %%xmm4 \n" // d<<62:stuff
"psllq $57, %%xmm5 \n" // d<<57:stuff
"pxor %%xmm4, %%xmm3 \n" // d<<63+d<<62:stuff
"pxor %%xmm5, %%xmm3 \n" // missing bits of d:stuff
"psrldq $8, %%xmm3 \n" // 0:missing bits of d
"pxor %%xmm3, %%xmm0 \n" // e1+f1+g1:e0+f0+g0
"pxor %%xmm1, %%xmm0 \n" // h1:h0
"pxor %%xmm2, %%xmm0 \n" // x3+h1:x2+h0
"movdqu %%xmm0, (%2) \n" // done
:
: "r" (aa), "r" (bb), "r" (cc)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" );
/* Now byte-reverse the outputs */
for( i = 0; i < 16; i++ )
c[i] = cc[15 - i];
return( 0 );
}
/*
* Compute decryption round keys from encryption round keys
*/
void aesni_inverse_key( unsigned char *invkey,
const unsigned char *fwdkey, int nr )
{
unsigned char *ik = invkey;
const unsigned char *fk = fwdkey + 16 * nr;
memcpy( ik, fk, 16 );
for( fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16 )
asm( "movdqu (%0), %%xmm0 \n"
"aesimc %%xmm0, %%xmm0 \n"
"movdqu %%xmm0, (%1) \n"
:
: "r" (fk), "r" (ik)
: "memory", "xmm0" );
memcpy( ik, fk, 16 );
}
/*
* Key expansion, 128-bit case
*/
void aesni_setkey_enc_128( unsigned char *rk,
const unsigned char *key )
{
asm( "movdqu (%1), %%xmm0 \n" // copy the original key
"movdqu %%xmm0, (%0) \n" // as round key 0
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n"
"pshufd $0xff, %%xmm1, %%xmm1 \n" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n" // etc
"pxor %%xmm0, %%xmm1 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n" // update xmm0 for next time!
"add $16, %0 \n" // point to next round key
"movdqu %%xmm0, (%0) \n" // write it
"ret \n"
/* Main "loop" */
"2: \n"
"aeskeygenassist $0x01, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x80, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x1B, %%xmm0, %%xmm1 \ncall 1b \n"
"aeskeygenassist $0x36, %%xmm0, %%xmm1 \ncall 1b \n"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0" );
}
/*
* Key expansion, 192-bit case
*/
void aesni_setkey_enc_192( unsigned char *rk,
const unsigned char *key )
{
asm( "movdqu (%1), %%xmm0 \n" // copy original round key
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"movq 16(%1), %%xmm1 \n"
"movq %%xmm1, (%0) \n"
"add $8, %0 \n"
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n"
"pshufd $0x55, %%xmm2, %%xmm2 \n" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n" // etc
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm2, %%xmm0 \n" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"pshufd $0xff, %%xmm0, %%xmm2 \n" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n" // update xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n"
"add $8, %0 \n"
"ret \n"
"2: \n"
"aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x80, %%xmm1, %%xmm2 \ncall 1b \n"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0" );
}
/*
* Key expansion, 256-bit case
*/
void aesni_setkey_enc_256( unsigned char *rk,
const unsigned char *key )
{
asm( "movdqu (%1), %%xmm0 \n"
"movdqu %%xmm0, (%0) \n"
"add $16, %0 \n"
"movdqu 16(%1), %%xmm1 \n"
"movdqu %%xmm1, (%0) \n"
"jmp 2f \n" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n"
"pshufd $0xff, %%xmm2, %%xmm2 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm0, %%xmm2 \n"
"pslldq $4, %%xmm0 \n"
"pxor %%xmm2, %%xmm0 \n"
"add $16, %0 \n"
"movdqu %%xmm0, (%0) \n"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
"aeskeygenassist $0, %%xmm0, %%xmm2\n"
"pshufd $0xaa, %%xmm2, %%xmm2 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm1, %%xmm2 \n"
"pslldq $4, %%xmm1 \n"
"pxor %%xmm2, %%xmm1 \n"
"add $16, %0 \n"
"movdqu %%xmm1, (%0) \n"
"ret \n"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of aes_context.buf
*/
"2: \n"
"aeskeygenassist $0x01, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x02, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x04, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x08, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x10, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x20, %%xmm1, %%xmm2 \ncall 1b \n"
"aeskeygenassist $0x40, %%xmm1, %%xmm2 \ncall 1b \n"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0" );
}
/*
* Key expansion, wrapper
*/
int aesni_setkey_enc( unsigned char *rk,
const unsigned char *key,
size_t bits )
{
switch( bits )
{
case 128: aesni_setkey_enc_128( rk, key ); break;
case 192: aesni_setkey_enc_192( rk, key ); break;
case 256: aesni_setkey_enc_256( rk, key ); break;
default : return( POLARSSL_ERR_AES_INVALID_KEY_LENGTH );
}
return( 0 );
}
#endif /* POLARSSL_HAVE_X86_64 */
#endif /* POLARSSL_AESNI_C */