mbedtls/library/pk_wrap.c
Gilles Peskine a4c01dd6e9
Merge pull request #7991 from sarveshb14/fix/psa_rsa_signature_using_large_stack
rsa_signature: Use heap memory to allocate DER encoded RSA private key
2023-08-16 09:23:29 +00:00

1841 lines
60 KiB
C

/*
* Public Key abstraction layer: wrapper functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common.h"
#include "mbedtls/platform_util.h"
#if defined(MBEDTLS_PK_C)
#include "pk_wrap.h"
#include "pk_internal.h"
#include "mbedtls/error.h"
#include "md_psa.h"
/* Even if RSA not activated, for the sake of RSA-alt */
#include "mbedtls/rsa.h"
#if defined(MBEDTLS_ECP_C)
#include "mbedtls/ecp.h"
#endif
#if defined(MBEDTLS_ECDSA_C)
#include "mbedtls/ecdsa.h"
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PSA_CRYPTO_C)
#include "pkwrite.h"
#endif
#if defined(MBEDTLS_PSA_CRYPTO_C)
#include "psa_util_internal.h"
#endif
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#include "psa/crypto.h"
#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
#include "mbedtls/asn1write.h"
#include "mbedtls/asn1.h"
#endif
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#include "mbedtls/platform.h"
#include <limits.h>
#include <stdint.h>
#include <string.h>
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
#if defined(MBEDTLS_PSA_CRYPTO_C)
int mbedtls_pk_error_from_psa(psa_status_t status)
{
switch (status) {
case PSA_SUCCESS:
return 0;
case PSA_ERROR_INVALID_HANDLE:
return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
case PSA_ERROR_NOT_PERMITTED:
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
case PSA_ERROR_BUFFER_TOO_SMALL:
return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
case PSA_ERROR_NOT_SUPPORTED:
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
case PSA_ERROR_INVALID_ARGUMENT:
return MBEDTLS_ERR_PK_INVALID_ALG;
case PSA_ERROR_INSUFFICIENT_MEMORY:
return MBEDTLS_ERR_PK_ALLOC_FAILED;
case PSA_ERROR_BAD_STATE:
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
case PSA_ERROR_COMMUNICATION_FAILURE:
case PSA_ERROR_HARDWARE_FAILURE:
return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
case PSA_ERROR_DATA_CORRUPT:
case PSA_ERROR_DATA_INVALID:
case PSA_ERROR_STORAGE_FAILURE:
return MBEDTLS_ERR_PK_FILE_IO_ERROR;
case PSA_ERROR_CORRUPTION_DETECTED:
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
default:
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
}
#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) || \
defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
int mbedtls_pk_error_from_psa_rsa(psa_status_t status)
{
switch (status) {
case PSA_ERROR_NOT_PERMITTED:
case PSA_ERROR_INVALID_ARGUMENT:
case PSA_ERROR_INVALID_HANDLE:
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
case PSA_ERROR_BUFFER_TOO_SMALL:
return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
case PSA_ERROR_INSUFFICIENT_ENTROPY:
return MBEDTLS_ERR_RSA_RNG_FAILED;
case PSA_ERROR_INVALID_SIGNATURE:
return MBEDTLS_ERR_RSA_VERIFY_FAILED;
case PSA_ERROR_INVALID_PADDING:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
case PSA_SUCCESS:
return 0;
case PSA_ERROR_NOT_SUPPORTED:
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
case PSA_ERROR_INSUFFICIENT_MEMORY:
return MBEDTLS_ERR_PK_ALLOC_FAILED;
case PSA_ERROR_BAD_STATE:
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
case PSA_ERROR_COMMUNICATION_FAILURE:
case PSA_ERROR_HARDWARE_FAILURE:
return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
case PSA_ERROR_DATA_CORRUPT:
case PSA_ERROR_DATA_INVALID:
case PSA_ERROR_STORAGE_FAILURE:
return MBEDTLS_ERR_PK_FILE_IO_ERROR;
case PSA_ERROR_CORRUPTION_DETECTED:
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
default:
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
}
#endif /* PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY || PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
#endif /* MBEDTLS_PSA_CRYPTO_C */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#if defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
int mbedtls_pk_error_from_psa_ecdsa(psa_status_t status)
{
switch (status) {
case PSA_ERROR_NOT_PERMITTED:
case PSA_ERROR_INVALID_ARGUMENT:
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
case PSA_ERROR_INVALID_HANDLE:
return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
case PSA_ERROR_BUFFER_TOO_SMALL:
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
case PSA_ERROR_INSUFFICIENT_ENTROPY:
return MBEDTLS_ERR_ECP_RANDOM_FAILED;
case PSA_ERROR_INVALID_SIGNATURE:
return MBEDTLS_ERR_ECP_VERIFY_FAILED;
case PSA_SUCCESS:
return 0;
case PSA_ERROR_NOT_SUPPORTED:
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
case PSA_ERROR_INSUFFICIENT_MEMORY:
return MBEDTLS_ERR_PK_ALLOC_FAILED;
case PSA_ERROR_BAD_STATE:
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
case PSA_ERROR_COMMUNICATION_FAILURE:
case PSA_ERROR_HARDWARE_FAILURE:
return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
case PSA_ERROR_DATA_CORRUPT:
case PSA_ERROR_DATA_INVALID:
case PSA_ERROR_STORAGE_FAILURE:
return MBEDTLS_ERR_PK_FILE_IO_ERROR;
case PSA_ERROR_CORRUPTION_DETECTED:
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
default:
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
}
#endif /* PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY */
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#endif /* !MBEDTLS_DEPRECATED_REMOVED */
#if defined(MBEDTLS_RSA_C)
static int rsa_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_RSA ||
type == MBEDTLS_PK_RSASSA_PSS;
}
static size_t rsa_get_bitlen(mbedtls_pk_context *pk)
{
const mbedtls_rsa_context *rsa = (const mbedtls_rsa_context *) pk->pk_ctx;
return 8 * mbedtls_rsa_get_len(rsa);
}
#if defined(MBEDTLS_USE_PSA_CRYPTO)
static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
mbedtls_pk_context key;
int key_len;
unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
psa_algorithm_t psa_alg_md =
PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_md_psa_alg_from_type(md_alg));
size_t rsa_len = mbedtls_rsa_get_len(rsa);
if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
if (sig_len < rsa_len) {
return MBEDTLS_ERR_RSA_VERIFY_FAILED;
}
/* mbedtls_pk_write_pubkey_der() expects a full PK context;
* re-construct one to make it happy */
key.pk_info = &mbedtls_rsa_info;
key.pk_ctx = rsa;
key_len = mbedtls_pk_write_pubkey_der(&key, buf, sizeof(buf));
if (key_len <= 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, psa_alg_md);
psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
status = psa_import_key(&attributes,
buf + sizeof(buf) - key_len, key_len,
&key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
status = psa_verify_hash(key_id, psa_alg_md, hash, hash_len,
sig, sig_len);
if (status != PSA_SUCCESS) {
ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
goto cleanup;
}
ret = 0;
cleanup:
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
size_t rsa_len = mbedtls_rsa_get_len(rsa);
if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
if (sig_len < rsa_len) {
return MBEDTLS_ERR_RSA_VERIFY_FAILED;
}
if ((ret = mbedtls_rsa_pkcs1_verify(rsa, md_alg,
(unsigned int) hash_len,
hash, sig)) != 0) {
return ret;
}
/* The buffer contains a valid signature followed by extra data.
* We have a special error code for that so that so that callers can
* use mbedtls_pk_verify() to check "Does the buffer start with a
* valid signature?" and not just "Does the buffer contain a valid
* signature?". */
if (sig_len > rsa_len) {
return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
}
return 0;
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#if defined(MBEDTLS_PSA_CRYPTO_C)
int mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t alg,
mbedtls_rsa_context *rsa_ctx,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size,
size_t *sig_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
mbedtls_pk_context key;
int key_len;
unsigned char *buf = NULL;
buf = mbedtls_calloc(1, MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES);
if (buf == NULL) {
return MBEDTLS_ERR_PK_ALLOC_FAILED;
}
mbedtls_pk_info_t pk_info = mbedtls_rsa_info;
*sig_len = mbedtls_rsa_get_len(rsa_ctx);
if (sig_size < *sig_len) {
mbedtls_free(buf);
return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
}
/* mbedtls_pk_write_key_der() expects a full PK context;
* re-construct one to make it happy */
key.pk_info = &pk_info;
key.pk_ctx = rsa_ctx;
key_len = mbedtls_pk_write_key_der(&key, buf, MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES);
if (key_len <= 0) {
mbedtls_free(buf);
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
status = psa_import_key(&attributes,
buf + MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES - key_len, key_len,
&key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
status = psa_sign_hash(key_id, alg, hash, hash_len,
sig, sig_size, sig_len);
if (status != PSA_SUCCESS) {
ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
goto cleanup;
}
ret = 0;
cleanup:
mbedtls_free(buf);
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
#endif /* MBEDTLS_PSA_CRYPTO_C */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
((void) f_rng);
((void) p_rng);
psa_algorithm_t psa_md_alg;
psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
if (psa_md_alg == 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
return mbedtls_pk_psa_rsa_sign_ext(PSA_ALG_RSA_PKCS1V15_SIGN(
psa_md_alg),
pk->pk_ctx, hash, hash_len,
sig, sig_size, sig_len);
}
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
*sig_len = mbedtls_rsa_get_len(rsa);
if (sig_size < *sig_len) {
return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
}
return mbedtls_rsa_pkcs1_sign(rsa, f_rng, p_rng,
md_alg, (unsigned int) hash_len,
hash, sig);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
mbedtls_pk_context key;
int key_len;
unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES];
((void) f_rng);
((void) p_rng);
#if !defined(MBEDTLS_RSA_ALT)
if (rsa->padding != MBEDTLS_RSA_PKCS_V15) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
#endif /* !MBEDTLS_RSA_ALT */
if (ilen != mbedtls_rsa_get_len(rsa)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/* mbedtls_pk_write_key_der() expects a full PK context;
* re-construct one to make it happy */
key.pk_info = &mbedtls_rsa_info;
key.pk_ctx = rsa;
key_len = mbedtls_pk_write_key_der(&key, buf, sizeof(buf));
if (key_len <= 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_CRYPT);
status = psa_import_key(&attributes,
buf + sizeof(buf) - key_len, key_len,
&key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
status = psa_asymmetric_decrypt(key_id, PSA_ALG_RSA_PKCS1V15_CRYPT,
input, ilen,
NULL, 0,
output, osize, olen);
if (status != PSA_SUCCESS) {
ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
goto cleanup;
}
ret = 0;
cleanup:
mbedtls_platform_zeroize(buf, sizeof(buf));
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
if (ilen != mbedtls_rsa_get_len(rsa)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
return mbedtls_rsa_pkcs1_decrypt(rsa, f_rng, p_rng,
olen, input, output, osize);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
mbedtls_pk_context key;
int key_len;
unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
((void) f_rng);
((void) p_rng);
#if !defined(MBEDTLS_RSA_ALT)
if (rsa->padding != MBEDTLS_RSA_PKCS_V15) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
#endif
if (mbedtls_rsa_get_len(rsa) > osize) {
return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
}
/* mbedtls_pk_write_pubkey_der() expects a full PK context;
* re-construct one to make it happy */
key.pk_info = &mbedtls_rsa_info;
key.pk_ctx = rsa;
key_len = mbedtls_pk_write_pubkey_der(&key, buf, sizeof(buf));
if (key_len <= 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_CRYPT);
psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
status = psa_import_key(&attributes,
buf + sizeof(buf) - key_len, key_len,
&key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
status = psa_asymmetric_encrypt(key_id, PSA_ALG_RSA_PKCS1V15_CRYPT,
input, ilen,
NULL, 0,
output, osize, olen);
if (status != PSA_SUCCESS) {
ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
goto cleanup;
}
ret = 0;
cleanup:
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
*olen = mbedtls_rsa_get_len(rsa);
if (*olen > osize) {
return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
}
return mbedtls_rsa_pkcs1_encrypt(rsa, f_rng, p_rng,
ilen, input, output);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
static int rsa_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
(void) f_rng;
(void) p_rng;
return mbedtls_rsa_check_pub_priv((const mbedtls_rsa_context *) pub->pk_ctx,
(const mbedtls_rsa_context *) prv->pk_ctx);
}
static void *rsa_alloc_wrap(void)
{
void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_context));
if (ctx != NULL) {
mbedtls_rsa_init((mbedtls_rsa_context *) ctx);
}
return ctx;
}
static void rsa_free_wrap(void *ctx)
{
mbedtls_rsa_free((mbedtls_rsa_context *) ctx);
mbedtls_free(ctx);
}
static void rsa_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
{
#if defined(MBEDTLS_RSA_ALT)
/* Not supported */
(void) pk;
(void) items;
#else
mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.N";
items->value = &(rsa->N);
items++;
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.E";
items->value = &(rsa->E);
#endif
}
const mbedtls_pk_info_t mbedtls_rsa_info = {
.type = MBEDTLS_PK_RSA,
.name = "RSA",
.get_bitlen = rsa_get_bitlen,
.can_do = rsa_can_do,
.verify_func = rsa_verify_wrap,
.sign_func = rsa_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = NULL,
.sign_rs_func = NULL,
.rs_alloc_func = NULL,
.rs_free_func = NULL,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = rsa_decrypt_wrap,
.encrypt_func = rsa_encrypt_wrap,
.check_pair_func = rsa_check_pair_wrap,
.ctx_alloc_func = rsa_alloc_wrap,
.ctx_free_func = rsa_free_wrap,
.debug_func = rsa_debug,
};
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
/*
* Generic EC key
*/
static int eckey_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH ||
type == MBEDTLS_PK_ECDSA;
}
static size_t eckey_get_bitlen(mbedtls_pk_context *pk)
{
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
return pk->ec_bits;
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
return ecp->grp.pbits;
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
}
#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
#if defined(MBEDTLS_USE_PSA_CRYPTO)
/*
* An ASN.1 encoded signature is a sequence of two ASN.1 integers. Parse one of
* those integers and convert it to the fixed-length encoding expected by PSA.
*/
static int extract_ecdsa_sig_int(unsigned char **from, const unsigned char *end,
unsigned char *to, size_t to_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t unpadded_len, padding_len;
if ((ret = mbedtls_asn1_get_tag(from, end, &unpadded_len,
MBEDTLS_ASN1_INTEGER)) != 0) {
return ret;
}
while (unpadded_len > 0 && **from == 0x00) {
(*from)++;
unpadded_len--;
}
if (unpadded_len > to_len || unpadded_len == 0) {
return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
}
padding_len = to_len - unpadded_len;
memset(to, 0x00, padding_len);
memcpy(to + padding_len, *from, unpadded_len);
(*from) += unpadded_len;
return 0;
}
/*
* Convert a signature from an ASN.1 sequence of two integers
* to a raw {r,s} buffer. Note: the provided sig buffer must be at least
* twice as big as int_size.
*/
static int extract_ecdsa_sig(unsigned char **p, const unsigned char *end,
unsigned char *sig, size_t int_size)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t tmp_size;
if ((ret = mbedtls_asn1_get_tag(p, end, &tmp_size,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
return ret;
}
/* Extract r */
if ((ret = extract_ecdsa_sig_int(p, end, sig, int_size)) != 0) {
return ret;
}
/* Extract s */
if ((ret = extract_ecdsa_sig_int(p, end, sig + int_size, int_size)) != 0) {
return ret;
}
return 0;
}
/* Common helper for ECDSA verify using PSA functions. */
static int ecdsa_verify_psa(unsigned char *key, size_t key_len,
psa_ecc_family_t curve, size_t curve_bits,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA_ANY;
size_t signature_len = PSA_ECDSA_SIGNATURE_SIZE(curve_bits);
unsigned char extracted_sig[PSA_VENDOR_ECDSA_SIGNATURE_MAX_SIZE];
unsigned char *p;
psa_status_t status;
if (curve == 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, psa_sig_md);
status = psa_import_key(&attributes, key, key_len, &key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
if (signature_len > sizeof(extracted_sig)) {
ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
goto cleanup;
}
p = (unsigned char *) sig;
/* extract_ecdsa_sig's last parameter is the size
* of each integer to be parsed, so it's actually half
* the size of the signature. */
if ((ret = extract_ecdsa_sig(&p, sig + sig_len, extracted_sig,
signature_len/2)) != 0) {
goto cleanup;
}
status = psa_verify_hash(key_id, psa_sig_md, hash, hash_len,
extracted_sig, signature_len);
if (status != PSA_SUCCESS) {
ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
goto cleanup;
}
if (p != sig + sig_len) {
ret = MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
goto cleanup;
}
ret = 0;
cleanup:
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
static int ecdsa_opaque_verify_wrap(mbedtls_pk_context *pk,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
(void) md_alg;
unsigned char key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
size_t key_len;
psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
psa_ecc_family_t curve;
size_t curve_bits;
psa_status_t status;
status = psa_get_key_attributes(pk->priv_id, &key_attr);
if (status != PSA_SUCCESS) {
return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
}
curve = PSA_KEY_TYPE_ECC_GET_FAMILY(psa_get_key_type(&key_attr));
curve_bits = psa_get_key_bits(&key_attr);
psa_reset_key_attributes(&key_attr);
status = psa_export_public_key(pk->priv_id, key, sizeof(key), &key_len);
if (status != PSA_SUCCESS) {
return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
}
return ecdsa_verify_psa(key, key_len, curve, curve_bits,
hash, hash_len, sig, sig_len);
}
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
(void) md_alg;
psa_ecc_family_t curve = pk->ec_family;
size_t curve_bits = pk->ec_bits;
return ecdsa_verify_psa(pk->pub_raw, pk->pub_raw_len, curve, curve_bits,
hash, hash_len, sig, sig_len);
}
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
(void) md_alg;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_ecp_keypair *ctx = pk->pk_ctx;
unsigned char key[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
size_t key_len;
size_t curve_bits;
psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
ret = mbedtls_ecp_point_write_binary(&ctx->grp, &ctx->Q,
MBEDTLS_ECP_PF_UNCOMPRESSED,
&key_len, key, sizeof(key));
if (ret != 0) {
return ret;
}
return ecdsa_verify_psa(key, key_len, curve, curve_bits,
hash, hash_len, sig, sig_len);
}
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int ecdsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
hash, hash_len, sig, sig_len);
if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
}
return ret;
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
#if defined(MBEDTLS_USE_PSA_CRYPTO)
/*
* Simultaneously convert and move raw MPI from the beginning of a buffer
* to an ASN.1 MPI at the end of the buffer.
* See also mbedtls_asn1_write_mpi().
*
* p: pointer to the end of the output buffer
* start: start of the output buffer, and also of the mpi to write at the end
* n_len: length of the mpi to read from start
*/
static int asn1_write_mpibuf(unsigned char **p, unsigned char *start,
size_t n_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t len = 0;
if ((size_t) (*p - start) < n_len) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
len = n_len;
*p -= len;
memmove(*p, start, len);
/* ASN.1 DER encoding requires minimal length, so skip leading 0s.
* Neither r nor s should be 0, but as a failsafe measure, still detect
* that rather than overflowing the buffer in case of a PSA error. */
while (len > 0 && **p == 0x00) {
++(*p);
--len;
}
/* this is only reached if the signature was invalid */
if (len == 0) {
return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
}
/* if the msb is 1, ASN.1 requires that we prepend a 0.
* Neither r nor s can be 0, so we can assume len > 0 at all times. */
if (**p & 0x80) {
if (*p - start < 1) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
*--(*p) = 0x00;
len += 1;
}
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
MBEDTLS_ASN1_INTEGER));
return (int) len;
}
/* Transcode signature from PSA format to ASN.1 sequence.
* See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of
* MPIs, and in-place.
*
* [in/out] sig: the signature pre- and post-transcoding
* [in/out] sig_len: signature length pre- and post-transcoding
* [int] buf_len: the available size the in/out buffer
*/
static int pk_ecdsa_sig_asn1_from_psa(unsigned char *sig, size_t *sig_len,
size_t buf_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t len = 0;
const size_t rs_len = *sig_len / 2;
unsigned char *p = sig + buf_len;
MBEDTLS_ASN1_CHK_ADD(len, asn1_write_mpibuf(&p, sig + rs_len, rs_len));
MBEDTLS_ASN1_CHK_ADD(len, asn1_write_mpibuf(&p, sig, rs_len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, sig, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, sig,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE));
memmove(sig, p, len);
*sig_len = len;
return 0;
}
/* Common helper for ECDSA sign using PSA functions. */
static int ecdsa_sign_psa(mbedtls_svc_key_id_t key_id, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
psa_status_t status;
psa_algorithm_t psa_sig_md;
psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
psa_algorithm_t alg;
status = psa_get_key_attributes(key_id, &key_attr);
if (status != PSA_SUCCESS) {
return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
}
alg = psa_get_key_algorithm(&key_attr);
psa_reset_key_attributes(&key_attr);
if (PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)) {
psa_sig_md = PSA_ALG_DETERMINISTIC_ECDSA(mbedtls_md_psa_alg_from_type(md_alg));
} else {
psa_sig_md = PSA_ALG_ECDSA(mbedtls_md_psa_alg_from_type(md_alg));
}
status = psa_sign_hash(key_id, psa_sig_md, hash, hash_len,
sig, sig_size, sig_len);
if (status != PSA_SUCCESS) {
return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
}
ret = pk_ecdsa_sig_asn1_from_psa(sig, sig_len, sig_size);
return ret;
}
static int ecdsa_opaque_sign_wrap(mbedtls_pk_context *pk,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size,
size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
((void) f_rng);
((void) p_rng);
return ecdsa_sign_psa(pk->priv_id, md_alg, hash, hash_len, sig, sig_size,
sig_len);
}
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
* using the same function. */
#define ecdsa_sign_wrap ecdsa_opaque_sign_wrap
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
mbedtls_ecp_keypair *ctx = pk->pk_ctx;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
unsigned char buf[MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH];
size_t curve_bits;
psa_ecc_family_t curve =
mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
size_t key_len = PSA_BITS_TO_BYTES(curve_bits);
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
psa_algorithm_t psa_sig_md =
PSA_ALG_DETERMINISTIC_ECDSA(mbedtls_md_psa_alg_from_type(md_alg));
#else
psa_algorithm_t psa_sig_md =
PSA_ALG_ECDSA(mbedtls_md_psa_alg_from_type(md_alg));
#endif
((void) f_rng);
((void) p_rng);
if (curve == 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
if (key_len > sizeof(buf)) {
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
}
ret = mbedtls_mpi_write_binary(&ctx->d, buf, key_len);
if (ret != 0) {
goto cleanup;
}
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, psa_sig_md);
status = psa_import_key(&attributes, buf, key_len, &key_id);
if (status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
goto cleanup;
}
ret = ecdsa_sign_psa(key_id, md_alg, hash, hash_len, sig, sig_size, sig_len);
cleanup:
mbedtls_platform_zeroize(buf, sizeof(buf));
status = psa_destroy_key(key_id);
if (ret == 0 && status != PSA_SUCCESS) {
ret = PSA_PK_TO_MBEDTLS_ERR(status);
}
return ret;
}
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
return mbedtls_ecdsa_write_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
md_alg, hash, hash_len,
sig, sig_size, sig_len,
f_rng, p_rng);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
/* Forward declarations */
static int ecdsa_verify_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx);
static int ecdsa_sign_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx);
/*
* Restart context for ECDSA operations with ECKEY context
*
* We need to store an actual ECDSA context, as we need to pass the same to
* the underlying ecdsa function, so we can't create it on the fly every time.
*/
typedef struct {
mbedtls_ecdsa_restart_ctx ecdsa_rs;
mbedtls_ecdsa_context ecdsa_ctx;
} eckey_restart_ctx;
static void *eckey_rs_alloc(void)
{
eckey_restart_ctx *rs_ctx;
void *ctx = mbedtls_calloc(1, sizeof(eckey_restart_ctx));
if (ctx != NULL) {
rs_ctx = ctx;
mbedtls_ecdsa_restart_init(&rs_ctx->ecdsa_rs);
mbedtls_ecdsa_init(&rs_ctx->ecdsa_ctx);
}
return ctx;
}
static void eckey_rs_free(void *ctx)
{
eckey_restart_ctx *rs_ctx;
if (ctx == NULL) {
return;
}
rs_ctx = ctx;
mbedtls_ecdsa_restart_free(&rs_ctx->ecdsa_rs);
mbedtls_ecdsa_free(&rs_ctx->ecdsa_ctx);
mbedtls_free(ctx);
}
static int eckey_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if (rs == NULL) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
/* set up our own sub-context if needed (that is, on first run) */
if (rs->ecdsa_ctx.grp.pbits == 0) {
MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
}
MBEDTLS_MPI_CHK(ecdsa_verify_rs_wrap(pk,
md_alg, hash, hash_len,
sig, sig_len, &rs->ecdsa_rs));
cleanup:
return ret;
}
static int eckey_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if (rs == NULL) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
/* set up our own sub-context if needed (that is, on first run) */
if (rs->ecdsa_ctx.grp.pbits == 0) {
MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
}
MBEDTLS_MPI_CHK(ecdsa_sign_rs_wrap(pk, md_alg,
hash, hash_len, sig, sig_size, sig_len,
f_rng, p_rng, &rs->ecdsa_rs));
cleanup:
return ret;
}
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
{
psa_status_t status;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
size_t prv_key_len;
mbedtls_svc_key_id_t key_id = prv->priv_id;
status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
&prv_key_len);
ret = PSA_PK_TO_MBEDTLS_ERR(status);
if (ret != 0) {
return ret;
}
if (memcmp(prv_key_buf, pub->pub_raw, pub->pub_raw_len) != 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
return 0;
}
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
{
psa_status_t status;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
size_t prv_key_len;
psa_status_t destruction_status;
mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
uint8_t pub_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
size_t pub_key_len;
size_t curve_bits;
const psa_ecc_family_t curve =
mbedtls_ecc_group_to_psa(mbedtls_pk_ec_ro(*prv)->grp.id, &curve_bits);
const size_t curve_bytes = PSA_BITS_TO_BYTES(curve_bits);
if (curve == 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT);
ret = mbedtls_mpi_write_binary(&mbedtls_pk_ec_ro(*prv)->d,
prv_key_buf, curve_bytes);
if (ret != 0) {
mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
return ret;
}
status = psa_import_key(&key_attr, prv_key_buf, curve_bytes, &key_id);
mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
ret = PSA_PK_TO_MBEDTLS_ERR(status);
if (ret != 0) {
return ret;
}
// From now on prv_key_buf is used to store the public key of prv.
status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
&prv_key_len);
ret = PSA_PK_TO_MBEDTLS_ERR(status);
destruction_status = psa_destroy_key(key_id);
if (ret != 0) {
return ret;
} else if (destruction_status != PSA_SUCCESS) {
return PSA_PK_TO_MBEDTLS_ERR(destruction_status);
}
ret = mbedtls_ecp_point_write_binary(&mbedtls_pk_ec_rw(*pub)->grp,
&mbedtls_pk_ec_rw(*pub)->Q,
MBEDTLS_ECP_PF_UNCOMPRESSED,
&pub_key_len, pub_key_buf,
sizeof(pub_key_buf));
if (ret != 0) {
return ret;
}
if (memcmp(prv_key_buf, pub_key_buf, curve_bytes) != 0) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
return 0;
}
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
(void) f_rng;
(void) p_rng;
return eckey_check_pair_psa(pub, prv);
}
#else /* MBEDTLS_USE_PSA_CRYPTO */
static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
return mbedtls_ecp_check_pub_priv((const mbedtls_ecp_keypair *) pub->pk_ctx,
(const mbedtls_ecp_keypair *) prv->pk_ctx,
f_rng, p_rng);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
* using the same function. */
#define ecdsa_opaque_check_pair_wrap eckey_check_pair_wrap
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
static int ecdsa_opaque_check_pair_wrap(mbedtls_pk_context *pub,
mbedtls_pk_context *prv,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
psa_status_t status;
uint8_t exp_pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
size_t exp_pub_key_len = 0;
uint8_t pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
size_t pub_key_len = 0;
int ret;
(void) f_rng;
(void) p_rng;
status = psa_export_public_key(prv->priv_id, exp_pub_key, sizeof(exp_pub_key),
&exp_pub_key_len);
if (status != PSA_SUCCESS) {
ret = psa_pk_status_to_mbedtls(status);
return ret;
}
ret = mbedtls_ecp_point_write_binary(&(mbedtls_pk_ec_ro(*pub)->grp),
&(mbedtls_pk_ec_ro(*pub)->Q),
MBEDTLS_ECP_PF_UNCOMPRESSED,
&pub_key_len, pub_key, sizeof(pub_key));
if (ret != 0) {
return ret;
}
if ((exp_pub_key_len != pub_key_len) ||
memcmp(exp_pub_key, pub_key, exp_pub_key_len)) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
return 0;
}
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#if !defined(MBEDTLS_PK_USE_PSA_EC_DATA)
static void *eckey_alloc_wrap(void)
{
void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecp_keypair));
if (ctx != NULL) {
mbedtls_ecp_keypair_init(ctx);
}
return ctx;
}
static void eckey_free_wrap(void *ctx)
{
mbedtls_ecp_keypair_free((mbedtls_ecp_keypair *) ctx);
mbedtls_free(ctx);
}
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
static void eckey_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
{
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
items->type = MBEDTLS_PK_DEBUG_PSA_EC;
items->name = "eckey.Q";
items->value = pk;
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
items->type = MBEDTLS_PK_DEBUG_ECP;
items->name = "eckey.Q";
items->value = &(ecp->Q);
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
}
const mbedtls_pk_info_t mbedtls_eckey_info = {
.type = MBEDTLS_PK_ECKEY,
.name = "EC",
.get_bitlen = eckey_get_bitlen,
.can_do = eckey_can_do,
#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
.verify_func = ecdsa_verify_wrap, /* Compatible key structures */
#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
.verify_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
.sign_func = ecdsa_sign_wrap, /* Compatible key structures */
#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
.sign_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = eckey_verify_rs_wrap,
.sign_rs_func = eckey_sign_rs_wrap,
.rs_alloc_func = eckey_rs_alloc,
.rs_free_func = eckey_rs_free,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = NULL,
.encrypt_func = NULL,
.check_pair_func = eckey_check_pair_wrap,
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
.ctx_alloc_func = NULL,
.ctx_free_func = NULL,
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
.ctx_alloc_func = eckey_alloc_wrap,
.ctx_free_func = eckey_free_wrap,
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
.debug_func = eckey_debug,
};
/*
* EC key restricted to ECDH
*/
static int eckeydh_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH;
}
const mbedtls_pk_info_t mbedtls_eckeydh_info = {
.type = MBEDTLS_PK_ECKEY_DH,
.name = "EC_DH",
.get_bitlen = eckey_get_bitlen, /* Same underlying key structure */
.can_do = eckeydh_can_do,
.verify_func = NULL,
.sign_func = NULL,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = NULL,
.sign_rs_func = NULL,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = NULL,
.encrypt_func = NULL,
.check_pair_func = eckey_check_pair_wrap,
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
.ctx_alloc_func = NULL,
.ctx_free_func = NULL,
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
.ctx_alloc_func = eckey_alloc_wrap, /* Same underlying key structure */
.ctx_free_func = eckey_free_wrap, /* Same underlying key structure */
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
.debug_func = eckey_debug, /* Same underlying key structure */
};
#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
static int ecdsa_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_ECDSA;
}
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
static int ecdsa_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature_restartable(
(mbedtls_ecdsa_context *) pk->pk_ctx,
hash, hash_len, sig, sig_len,
(mbedtls_ecdsa_restart_ctx *) rs_ctx);
if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
}
return ret;
}
static int ecdsa_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx)
{
return mbedtls_ecdsa_write_signature_restartable(
(mbedtls_ecdsa_context *) pk->pk_ctx,
md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng,
(mbedtls_ecdsa_restart_ctx *) rs_ctx);
}
static void *ecdsa_rs_alloc(void)
{
void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecdsa_restart_ctx));
if (ctx != NULL) {
mbedtls_ecdsa_restart_init(ctx);
}
return ctx;
}
static void ecdsa_rs_free(void *ctx)
{
mbedtls_ecdsa_restart_free(ctx);
mbedtls_free(ctx);
}
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
const mbedtls_pk_info_t mbedtls_ecdsa_info = {
.type = MBEDTLS_PK_ECDSA,
.name = "ECDSA",
.get_bitlen = eckey_get_bitlen, /* Compatible key structures */
.can_do = ecdsa_can_do,
#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
.verify_func = ecdsa_verify_wrap, /* Compatible key structures */
#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
.verify_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
.sign_func = ecdsa_sign_wrap, /* Compatible key structures */
#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
.sign_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = ecdsa_verify_rs_wrap,
.sign_rs_func = ecdsa_sign_rs_wrap,
.rs_alloc_func = ecdsa_rs_alloc,
.rs_free_func = ecdsa_rs_free,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = NULL,
.encrypt_func = NULL,
.check_pair_func = eckey_check_pair_wrap, /* Compatible key structures */
#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
.ctx_alloc_func = NULL,
.ctx_free_func = NULL,
#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
.ctx_alloc_func = eckey_alloc_wrap, /* Compatible key structures */
.ctx_free_func = eckey_free_wrap, /* Compatible key structures */
#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
.debug_func = eckey_debug, /* Compatible key structures */
};
#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
/*
* Support for alternative RSA-private implementations
*/
static int rsa_alt_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_RSA;
}
static size_t rsa_alt_get_bitlen(mbedtls_pk_context *pk)
{
const mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
return 8 * rsa_alt->key_len_func(rsa_alt->key);
}
static int rsa_alt_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
if (UINT_MAX < hash_len) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
*sig_len = rsa_alt->key_len_func(rsa_alt->key);
if (*sig_len > MBEDTLS_PK_SIGNATURE_MAX_SIZE) {
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
}
if (*sig_len > sig_size) {
return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
}
return rsa_alt->sign_func(rsa_alt->key, f_rng, p_rng,
md_alg, (unsigned int) hash_len, hash, sig);
}
static int rsa_alt_decrypt_wrap(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
((void) f_rng);
((void) p_rng);
if (ilen != rsa_alt->key_len_func(rsa_alt->key)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
return rsa_alt->decrypt_func(rsa_alt->key,
olen, input, output, osize);
}
#if defined(MBEDTLS_RSA_C)
static int rsa_alt_check_pair(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
unsigned char hash[32];
size_t sig_len = 0;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
if (rsa_alt_get_bitlen(prv) != rsa_get_bitlen(pub)) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
memset(hash, 0x2a, sizeof(hash));
if ((ret = rsa_alt_sign_wrap(prv, MBEDTLS_MD_NONE,
hash, sizeof(hash),
sig, sizeof(sig), &sig_len,
f_rng, p_rng)) != 0) {
return ret;
}
if (rsa_verify_wrap(pub, MBEDTLS_MD_NONE,
hash, sizeof(hash), sig, sig_len) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
return 0;
}
#endif /* MBEDTLS_RSA_C */
static void *rsa_alt_alloc_wrap(void)
{
void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_alt_context));
if (ctx != NULL) {
memset(ctx, 0, sizeof(mbedtls_rsa_alt_context));
}
return ctx;
}
static void rsa_alt_free_wrap(void *ctx)
{
mbedtls_zeroize_and_free(ctx, sizeof(mbedtls_rsa_alt_context));
}
const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
.type = MBEDTLS_PK_RSA_ALT,
.name = "RSA-alt",
.get_bitlen = rsa_alt_get_bitlen,
.can_do = rsa_alt_can_do,
.verify_func = NULL,
.sign_func = rsa_alt_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = NULL,
.sign_rs_func = NULL,
.rs_alloc_func = NULL,
.rs_free_func = NULL,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = rsa_alt_decrypt_wrap,
.encrypt_func = NULL,
#if defined(MBEDTLS_RSA_C)
.check_pair_func = rsa_alt_check_pair,
#else
.check_pair_func = NULL,
#endif
.ctx_alloc_func = rsa_alt_alloc_wrap,
.ctx_free_func = rsa_alt_free_wrap,
.debug_func = NULL,
};
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
static size_t opaque_get_bitlen(mbedtls_pk_context *pk)
{
size_t bits;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
if (PSA_SUCCESS != psa_get_key_attributes(pk->priv_id, &attributes)) {
return 0;
}
bits = psa_get_key_bits(&attributes);
psa_reset_key_attributes(&attributes);
return bits;
}
#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
static int ecdsa_opaque_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECDSA;
}
const mbedtls_pk_info_t mbedtls_ecdsa_opaque_info = {
.type = MBEDTLS_PK_OPAQUE,
.name = "Opaque",
.get_bitlen = opaque_get_bitlen,
.can_do = ecdsa_opaque_can_do,
#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
.verify_func = ecdsa_opaque_verify_wrap,
#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
.verify_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
.sign_func = ecdsa_opaque_sign_wrap,
#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
.sign_func = NULL,
#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = NULL,
.sign_rs_func = NULL,
.rs_alloc_func = NULL,
.rs_free_func = NULL,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
.decrypt_func = NULL,
.encrypt_func = NULL,
.check_pair_func = ecdsa_opaque_check_pair_wrap,
.ctx_alloc_func = NULL,
.ctx_free_func = NULL,
.debug_func = NULL,
};
#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
static int rsa_opaque_can_do(mbedtls_pk_type_t type)
{
return type == MBEDTLS_PK_RSA ||
type == MBEDTLS_PK_RSASSA_PSS;
}
#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
static int rsa_opaque_decrypt(mbedtls_pk_context *pk,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
psa_status_t status;
/* PSA has its own RNG */
(void) f_rng;
(void) p_rng;
status = psa_asymmetric_decrypt(pk->priv_id, PSA_ALG_RSA_PKCS1V15_CRYPT,
input, ilen,
NULL, 0,
output, osize, olen);
if (status != PSA_SUCCESS) {
return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
}
return 0;
}
#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
static int rsa_opaque_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t sig_size, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
#if defined(MBEDTLS_RSA_C)
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_algorithm_t alg;
psa_key_type_t type;
psa_status_t status;
/* PSA has its own RNG */
(void) f_rng;
(void) p_rng;
status = psa_get_key_attributes(pk->priv_id, &attributes);
if (status != PSA_SUCCESS) {
return PSA_PK_TO_MBEDTLS_ERR(status);
}
type = psa_get_key_type(&attributes);
psa_reset_key_attributes(&attributes);
if (PSA_KEY_TYPE_IS_RSA(type)) {
alg = PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_md_psa_alg_from_type(md_alg));
} else {
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
}
/* make the signature */
status = psa_sign_hash(pk->priv_id, alg, hash, hash_len,
sig, sig_size, sig_len);
if (status != PSA_SUCCESS) {
if (PSA_KEY_TYPE_IS_RSA(type)) {
return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
} else {
return PSA_PK_TO_MBEDTLS_ERR(status);
}
}
return 0;
#else /* !MBEDTLS_RSA_C */
((void) pk);
((void) md_alg);
((void) hash);
((void) hash_len);
((void) sig);
((void) sig_size);
((void) sig_len);
((void) f_rng);
((void) p_rng);
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
#endif /* !MBEDTLS_RSA_C */
}
const mbedtls_pk_info_t mbedtls_rsa_opaque_info = {
.type = MBEDTLS_PK_OPAQUE,
.name = "Opaque",
.get_bitlen = opaque_get_bitlen,
.can_do = rsa_opaque_can_do,
.verify_func = NULL,
.sign_func = rsa_opaque_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
.verify_rs_func = NULL,
.sign_rs_func = NULL,
.rs_alloc_func = NULL,
.rs_free_func = NULL,
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
.decrypt_func = rsa_opaque_decrypt,
#else /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
.decrypt_func = NULL,
#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
.encrypt_func = NULL,
.check_pair_func = NULL,
.ctx_alloc_func = NULL,
.ctx_free_func = NULL,
.debug_func = NULL,
};
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#endif /* MBEDTLS_PK_C */