mbedtls/tf-psa-crypto/tests/suites/test_suite_gcm.function
Harry Ramsey 8ad56b822b Fix TEST_CALLOC issues with GCM buffer overlap tests
This commit fixes issues with TEST_CALLOC in GCM buffer overlap tests
cases.

Signed-off-by: Harry Ramsey <harry.ramsey@arm.com>
2024-11-11 10:09:01 +00:00

744 lines
25 KiB
C

/* BEGIN_HEADER */
#include "mbedtls/gcm.h"
/* Use the multipart interface to process the encrypted data in two parts
* and check that the output matches the expected output.
* The context must have been set up with the key. */
static int check_multipart(mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *add,
const data_t *input,
const data_t *expected_output,
const data_t *tag,
size_t n1,
size_t n1_add)
{
int ok = 0;
uint8_t *output = NULL;
size_t n2 = input->len - n1;
size_t n2_add = add->len - n1_add;
size_t olen;
/* Sanity checks on the test data */
TEST_ASSERT(n1 <= input->len);
TEST_ASSERT(n1_add <= add->len);
TEST_EQUAL(input->len, expected_output->len);
TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
iv->x, iv->len));
TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x, n1_add));
TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x + n1_add, n2_add));
/* Allocate a tight buffer for each update call. This way, if the function
* tries to write beyond the advertised required buffer size, this will
* count as an overflow for memory sanitizers and static checkers. */
TEST_CALLOC(output, n1);
olen = 0xdeadbeef;
TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x, n1, output, n1, &olen));
TEST_EQUAL(n1, olen);
TEST_MEMORY_COMPARE(output, olen, expected_output->x, n1);
mbedtls_free(output);
output = NULL;
TEST_CALLOC(output, n2);
olen = 0xdeadbeef;
TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x + n1, n2, output, n2, &olen));
TEST_EQUAL(n2, olen);
TEST_MEMORY_COMPARE(output, olen, expected_output->x + n1, n2);
mbedtls_free(output);
output = NULL;
TEST_CALLOC(output, tag->len);
TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
TEST_EQUAL(0, olen);
TEST_MEMORY_COMPARE(output, tag->len, tag->x, tag->len);
mbedtls_free(output);
output = NULL;
ok = 1;
exit:
mbedtls_free(output);
return ok;
}
static void check_cipher_with_empty_ad(mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *input,
const data_t *expected_output,
const data_t *tag,
size_t ad_update_count)
{
size_t n;
uint8_t *output = NULL;
size_t olen;
/* Sanity checks on the test data */
TEST_EQUAL(input->len, expected_output->len);
TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
iv->x, iv->len));
for (n = 0; n < ad_update_count; n++) {
TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, NULL, 0));
}
/* Allocate a tight buffer for each update call. This way, if the function
* tries to write beyond the advertised required buffer size, this will
* count as an overflow for memory sanitizers and static checkers. */
TEST_CALLOC(output, input->len);
olen = 0xdeadbeef;
TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x, input->len, output, input->len, &olen));
TEST_EQUAL(input->len, olen);
TEST_MEMORY_COMPARE(output, olen, expected_output->x, input->len);
mbedtls_free(output);
output = NULL;
TEST_CALLOC(output, tag->len);
TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
TEST_EQUAL(0, olen);
TEST_MEMORY_COMPARE(output, tag->len, tag->x, tag->len);
exit:
mbedtls_free(output);
}
static void check_empty_cipher_with_ad(mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *add,
const data_t *tag,
size_t cipher_update_count)
{
size_t olen;
size_t n;
uint8_t *output_tag = NULL;
TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode, iv->x, iv->len));
TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x, add->len));
for (n = 0; n < cipher_update_count; n++) {
olen = 0xdeadbeef;
TEST_EQUAL(0, mbedtls_gcm_update(ctx, NULL, 0, NULL, 0, &olen));
TEST_EQUAL(0, olen);
}
TEST_CALLOC(output_tag, tag->len);
TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen,
output_tag, tag->len));
TEST_EQUAL(0, olen);
TEST_MEMORY_COMPARE(output_tag, tag->len, tag->x, tag->len);
exit:
mbedtls_free(output_tag);
}
static void check_no_cipher_no_ad(mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *tag)
{
uint8_t *output = NULL;
size_t olen = 0;
TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
iv->x, iv->len));
TEST_CALLOC(output, tag->len);
TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
TEST_EQUAL(0, olen);
TEST_MEMORY_COMPARE(output, tag->len, tag->x, tag->len);
exit:
mbedtls_free(output);
}
static void gcm_reset_ctx(mbedtls_gcm_context *ctx, const uint8_t *key,
size_t key_bits, const uint8_t *iv, size_t iv_len,
int starts_ret)
{
int mode = MBEDTLS_GCM_ENCRYPT;
mbedtls_cipher_id_t valid_cipher = MBEDTLS_CIPHER_ID_AES;
mbedtls_gcm_init(ctx);
TEST_EQUAL(mbedtls_gcm_setkey(ctx, valid_cipher, key, key_bits), 0);
TEST_EQUAL(starts_ret, mbedtls_gcm_starts(ctx, mode, iv, iv_len));
exit:
/* empty */
return;
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_GCM_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void gcm_bad_parameters(int cipher_id, int direction,
data_t *key_str, data_t *src_str,
data_t *iv_str, data_t *add_str,
int tag_len_bits, int gcm_result)
{
unsigned char output[128];
unsigned char tag_output[16];
mbedtls_gcm_context ctx;
size_t tag_len = tag_len_bits / 8;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
memset(output, 0x00, sizeof(output));
memset(tag_output, 0x00, sizeof(tag_output));
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
TEST_ASSERT(mbedtls_gcm_crypt_and_tag(&ctx, direction, src_str->len, iv_str->x, iv_str->len,
add_str->x, add_str->len, src_str->x, output, tag_len,
tag_output) == gcm_result);
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag(int cipher_id, data_t *key_str,
data_t *src_str, data_t *iv_str,
data_t *add_str, data_t *dst,
int tag_len_bits, data_t *tag,
int init_result)
{
unsigned char output[128];
unsigned char tag_output[16];
mbedtls_gcm_context ctx;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
memset(output, 0x00, 128);
memset(tag_output, 0x00, 16);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
if (init_result == 0) {
TEST_ASSERT(mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_ENCRYPT, src_str->len, iv_str->x,
iv_str->len, add_str->x, add_str->len, src_str->x,
output, tag_len, tag_output) == 0);
TEST_MEMORY_COMPARE(output, src_str->len, dst->x, dst->len);
TEST_MEMORY_COMPARE(tag_output, tag_len, tag->x, tag->len);
for (n1 = 0; n1 <= src_str->len; n1 += 1) {
for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
mbedtls_test_set_step(n1 * 10000 + n1_add);
if (!check_multipart(&ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, add_str, src_str,
dst, tag,
n1, n1_add)) {
goto exit;
}
}
}
}
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify(int cipher_id, data_t *key_str,
data_t *src_str, data_t *iv_str,
data_t *add_str, int tag_len_bits,
data_t *tag_str, char *result,
data_t *pt_result, int init_result)
{
unsigned char output[128];
mbedtls_gcm_context ctx;
int ret;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
memset(output, 0x00, 128);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
if (init_result == 0) {
ret = mbedtls_gcm_auth_decrypt(&ctx,
src_str->len,
iv_str->x,
iv_str->len,
add_str->x,
add_str->len,
tag_str->x,
tag_len,
src_str->x,
output);
if (strcmp("FAIL", result) == 0) {
TEST_ASSERT(ret == MBEDTLS_ERR_GCM_AUTH_FAILED);
} else {
TEST_ASSERT(ret == 0);
TEST_MEMORY_COMPARE(output, src_str->len, pt_result->x, pt_result->len);
for (n1 = 0; n1 <= src_str->len; n1 += 1) {
for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
mbedtls_test_set_step(n1 * 10000 + n1_add);
if (!check_multipart(&ctx, MBEDTLS_GCM_DECRYPT,
iv_str, add_str, src_str,
pt_result, tag_str,
n1, n1_add)) {
goto exit;
}
}
}
}
}
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_empty_cipher(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *add_str,
data_t *tag_str,
int cipher_update_calls)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_empty_cipher_with_ad(&ctx, MBEDTLS_GCM_DECRYPT,
iv_str, add_str, tag_str,
cipher_update_calls);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_empty_ad(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *src_str,
data_t *tag_str,
data_t *pt_result,
int ad_update_calls)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_cipher_with_empty_ad(&ctx, MBEDTLS_GCM_DECRYPT,
iv_str, src_str, pt_result, tag_str,
ad_update_calls);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_no_ad_no_cipher(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *tag_str)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_no_cipher_no_ad(&ctx, MBEDTLS_GCM_DECRYPT,
iv_str, tag_str);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag_empty_cipher(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *add_str,
data_t *tag_str,
int cipher_update_calls)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_empty_cipher_with_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, add_str, tag_str,
cipher_update_calls);
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag_empty_ad(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *src_str,
data_t *dst,
data_t *tag_str,
int ad_update_calls)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_cipher_with_empty_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, src_str, dst, tag_str,
ad_update_calls);
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_verify_no_ad_no_cipher(int cipher_id,
data_t *key_str,
data_t *iv_str,
data_t *tag_str)
{
mbedtls_gcm_context ctx;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
check_no_cipher_no_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, tag_str);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_invalid_param()
{
mbedtls_gcm_context ctx;
unsigned char valid_buffer[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
mbedtls_cipher_id_t valid_cipher = MBEDTLS_CIPHER_ID_AES;
int invalid_bitlen = 1;
mbedtls_gcm_init(&ctx);
/* mbedtls_gcm_setkey */
TEST_EQUAL(
MBEDTLS_ERR_GCM_BAD_INPUT,
mbedtls_gcm_setkey(&ctx, valid_cipher, valid_buffer, invalid_bitlen));
exit:
mbedtls_gcm_free(&ctx);
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_update_output_buffer_too_small(int cipher_id, int mode,
data_t *key_str, const data_t *input,
const data_t *iv)
{
mbedtls_gcm_context ctx;
uint8_t *output = NULL;
size_t olen = 0;
size_t output_len = input->len - 1;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
TEST_EQUAL(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8), 0);
TEST_EQUAL(0, mbedtls_gcm_starts(&ctx, mode, iv->x, iv->len));
TEST_CALLOC(output, output_len);
TEST_EQUAL(MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL,
mbedtls_gcm_update(&ctx, input->x, input->len, output, output_len, &olen));
exit:
mbedtls_free(output);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
/* NISP SP 800-38D, Section 5.2.1.1 requires that bit length of IV should
* satisfy 1 <= bit_len(IV) <= 2^64 - 1. */
void gcm_invalid_iv_len(void)
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init(&ctx);
uint8_t b16[16] = { 0 };
BLOCK_CIPHER_PSA_INIT();
// Invalid IV length 0
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, 0, MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
// Only testable on platforms where sizeof(size_t) >= 8.
#if SIZE_MAX >= UINT64_MAX
// Invalid IV length 2^61
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, 1ULL << 61, MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
#endif
goto exit; /* To suppress error that exit is defined but not used */
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_add_len_too_long(void)
{
// Only testable on platforms where sizeof(size_t) >= 8.
#if SIZE_MAX >= UINT64_MAX
mbedtls_gcm_context ctx;
mbedtls_gcm_init(&ctx);
uint8_t b16[16] = { 0 };
BLOCK_CIPHER_PSA_INIT();
/* NISP SP 800-38D, Section 5.2.1.1 requires that bit length of AD should
* be <= 2^64 - 1, ie < 2^64. This is the minimum invalid length in bytes. */
uint64_t len_max = 1ULL << 61;
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Feed AD that just exceeds the length limit
TEST_EQUAL(mbedtls_gcm_update_ad(&ctx, b16, len_max),
MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Feed AD that just exceeds the length limit in two calls
TEST_EQUAL(mbedtls_gcm_update_ad(&ctx, b16, 1), 0);
TEST_EQUAL(mbedtls_gcm_update_ad(&ctx, b16, len_max - 1),
MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Test if potential total AD length overflow is handled properly
TEST_EQUAL(mbedtls_gcm_update_ad(&ctx, b16, 1), 0);
TEST_EQUAL(mbedtls_gcm_update_ad(&ctx, b16, UINT64_MAX), MBEDTLS_ERR_GCM_BAD_INPUT);
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
#endif
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_input_len_too_long(void)
{
// Only testable on platforms where sizeof(size_t) >= 8
#if SIZE_MAX >= UINT64_MAX
mbedtls_gcm_context ctx;
uint8_t b16[16] = { 0 };
uint8_t out[1];
size_t out_len;
mbedtls_gcm_init(&ctx);
BLOCK_CIPHER_PSA_INIT();
/* NISP SP 800-38D, Section 5.2.1.1 requires that bit length of input should
* be <= 2^39 - 256. This is the maximum valid length in bytes. */
uint64_t len_max = (1ULL << 36) - 32;
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Feed input that just exceeds the length limit
TEST_EQUAL(mbedtls_gcm_update(&ctx, b16, len_max + 1, out, len_max + 1,
&out_len),
MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Feed input that just exceeds the length limit in two calls
TEST_EQUAL(mbedtls_gcm_update(&ctx, b16, 1, out, 1, &out_len), 0);
TEST_EQUAL(mbedtls_gcm_update(&ctx, b16, len_max, out, len_max, &out_len),
MBEDTLS_ERR_GCM_BAD_INPUT);
mbedtls_gcm_free(&ctx);
gcm_reset_ctx(&ctx, b16, sizeof(b16) * 8, b16, sizeof(b16), 0);
// Test if potential total input length overflow is handled properly
TEST_EQUAL(mbedtls_gcm_update(&ctx, b16, 1, out, 1, &out_len), 0);
TEST_EQUAL(mbedtls_gcm_update(&ctx, b16, UINT64_MAX, out, UINT64_MAX,
&out_len),
MBEDTLS_ERR_GCM_BAD_INPUT);
exit:
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
#endif
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_input_output_buffer_overlap(int cipher_id, data_t *key_str,
data_t *src_str, data_t *iv_str,
data_t *add_str, data_t *dst,
int tag_len_bits, data_t *tag,
int init_result)
{
unsigned char *buffer = NULL;
size_t buffer_len;
unsigned char tag_output[16];
mbedtls_gcm_context ctx;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
/* GCM includes padding and therefore input length can be shorter than the output length
* Therefore we must ensure we round up to the nearest 128-bits/16-bytes.
*/
buffer_len = src_str->len;
if (buffer_len % 16 != 0 || buffer_len == 0) {
buffer_len += (16 - (buffer_len % 16));
}
TEST_CALLOC(buffer, buffer_len);
memcpy(buffer, src_str->x, src_str->len);
memset(tag_output, 0x00, 16);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
if (init_result == 0) {
TEST_ASSERT(mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_ENCRYPT, src_str->len, iv_str->x,
iv_str->len, add_str->x, add_str->len, buffer,
buffer, tag_len, tag_output) == 0);
TEST_MEMORY_COMPARE(buffer, src_str->len, dst->x, dst->len);
TEST_MEMORY_COMPARE(tag_output, tag_len, tag->x, tag->len);
for (n1 = 0; n1 <= src_str->len; n1 += 1) {
for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
mbedtls_test_set_step(n1 * 10000 + n1_add);
if (!check_multipart(&ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, add_str, src_str,
dst, tag,
n1, n1_add)) {
goto exit;
}
}
}
}
exit:
mbedtls_free(buffer);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_input_output_buffer_overlap(int cipher_id, data_t *key_str,
data_t *src_str, data_t *iv_str,
data_t *add_str, int tag_len_bits,
data_t *tag_str, char *result,
data_t *pt_result, int init_result)
{
unsigned char *buffer = NULL;
size_t buffer_len;
mbedtls_gcm_context ctx;
int ret;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
BLOCK_CIPHER_PSA_INIT();
mbedtls_gcm_init(&ctx);
/* GCM includes padding and therefore input length can be shorter than the output length
* Therefore we must ensure we round up to the nearest 128-bits/16-bytes.
*/
buffer_len = src_str->len;
if (buffer_len % 16 != 0 || buffer_len == 0) {
buffer_len += (16 - (buffer_len % 16));
}
TEST_CALLOC(buffer, buffer_len);
memcpy(buffer, src_str->x, src_str->len);
TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
if (init_result == 0) {
ret = mbedtls_gcm_auth_decrypt(&ctx,
src_str->len,
iv_str->x,
iv_str->len,
add_str->x,
add_str->len,
tag_str->x,
tag_len,
buffer,
buffer);
if (strcmp("FAIL", result) == 0) {
TEST_ASSERT(ret == MBEDTLS_ERR_GCM_AUTH_FAILED);
} else {
TEST_ASSERT(ret == 0);
TEST_MEMORY_COMPARE(buffer, src_str->len, pt_result->x, pt_result->len);
for (n1 = 0; n1 <= src_str->len; n1 += 1) {
for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
mbedtls_test_set_step(n1 * 10000 + n1_add);
if (!check_multipart(&ctx, MBEDTLS_GCM_DECRYPT,
iv_str, add_str, src_str,
pt_result, tag_str,
n1, n1_add)) {
goto exit;
}
}
}
}
}
exit:
mbedtls_free(buffer);
mbedtls_gcm_free(&ctx);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST:MBEDTLS_CCM_GCM_CAN_AES */
void gcm_selftest()
{
BLOCK_CIPHER_PSA_INIT();
TEST_ASSERT(mbedtls_gcm_self_test(1) == 0);
BLOCK_CIPHER_PSA_DONE();
}
/* END_CASE */