mbedtls/library/sha3.c
Pol Henarejos 938b5abb13
Fix when reusing the same context for another operation.
Occurs in hmac, where multiple hashes are performed with the same context) and thus, it requires to reinitialize the internal states to 0.

Signed-off-by: Pol Henarejos <pol.henarejos@cttc.es>
2022-05-20 20:07:40 +02:00

302 lines
8.6 KiB
C

/*
* FIPS-202 compliant SHA3 implementation
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The SHA-3 Secure Hash Standard was published by NIST in 2015.
*
* https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
*/
#include "common.h"
#if defined(MBEDTLS_SHA3_C)
#include "mbedtls/sha3.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include <string.h>
#if defined(MBEDTLS_SELF_TEST)
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#include <stdlib.h>
#define mbedtls_printf printf
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif /* MBEDTLS_PLATFORM_C */
#endif /* MBEDTLS_SELF_TEST */
/*
* List of supported SHA-3 families
*/
static mbedtls_sha3_family_functions sha3_families[] = {
{ MBEDTLS_SHA3_224, 1152, 224, 0x06 },
{ MBEDTLS_SHA3_256, 1088, 256, 0x06 },
{ MBEDTLS_SHA3_384, 832, 384, 0x06 },
{ MBEDTLS_SHA3_512, 576, 512, 0x06 },
{ MBEDTLS_SHA3_NONE, 0, 0, 0 }
};
static const uint64_t rc[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008,
};
static const uint8_t rho[24] = {
1, 62, 28, 27, 36, 44, 6, 55, 20,
3, 10, 43, 25, 39, 41, 45, 15,
21, 8, 18, 2, 61, 56, 14
};
static const uint8_t pi[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
};
#define ROT64( x , y ) ( ( ( x ) << ( y ) ) | ( ( x ) >> ( 64U - ( y ) ) ) )
#define ABSORB( ctx, idx, v ) do { ctx->state[( idx ) >> 3] ^= ( ( uint64_t ) ( v ) ) << ( ( ( idx ) & 0x7 ) << 3 ); } while( 0 )
#define SQUEEZE( ctx, idx ) ( ( uint8_t )( ctx->state[( idx ) >> 3] >> ( ( ( idx ) & 0x7 ) << 3 ) ) )
#define SWAP( x, y ) do { uint64_t tmp = ( x ); ( x ) = ( y ); ( y ) = tmp; } while( 0 )
/* The permutation function. */
static void keccak_f1600(mbedtls_sha3_context *ctx)
{
uint64_t lane[5];
uint64_t *s = ctx->state;
int i;
for( int round = 0; round < 24; round++ )
{
uint64_t t;
/* Theta */
lane[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
lane[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
lane[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
lane[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
lane[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
t = lane[4] ^ ROT64( lane[1], 1 );
s[0] ^= t; s[5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t;
t = lane[0] ^ ROT64( lane[2], 1 );
s[1] ^= t; s[6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t;
t = lane[1] ^ ROT64( lane[3], 1 );
s[2] ^= t; s[7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t;
t = lane[2] ^ ROT64( lane[4], 1 );
s[3] ^= t; s[8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t;
t = lane[3] ^ ROT64( lane[0], 1 );
s[4] ^= t; s[9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t;
/* Rho */
for( i = 1; i < 25; i++ )
s[i] = ROT64( s[i], rho[i-1] );
/* Pi */
t = s[1];
for( i = 0; i < 24; i++ )
SWAP( s[pi[i]], t );
/* Chi */
lane[0] = s[0]; lane[1] = s[1]; lane[2] = s[2]; lane[3] = s[3]; lane[4] = s[4];
s[0] ^= (~lane[1]) & lane[2];
s[1] ^= (~lane[2]) & lane[3];
s[2] ^= (~lane[3]) & lane[4];
s[3] ^= (~lane[4]) & lane[0];
s[4] ^= (~lane[0]) & lane[1];
lane[0] = s[5]; lane[1] = s[6]; lane[2] = s[7]; lane[3] = s[8]; lane[4] = s[9];
s[5] ^= (~lane[1]) & lane[2];
s[6] ^= (~lane[2]) & lane[3];
s[7] ^= (~lane[3]) & lane[4];
s[8] ^= (~lane[4]) & lane[0];
s[9] ^= (~lane[0]) & lane[1];
lane[0] = s[10]; lane[1] = s[11]; lane[2] = s[12]; lane[3] = s[13]; lane[4] = s[14];
s[10] ^= (~lane[1]) & lane[2];
s[11] ^= (~lane[2]) & lane[3];
s[12] ^= (~lane[3]) & lane[4];
s[13] ^= (~lane[4]) & lane[0];
s[14] ^= (~lane[0]) & lane[1];
lane[0] = s[15]; lane[1] = s[16]; lane[2] = s[17]; lane[3] = s[18]; lane[4] = s[19];
s[15] ^= (~lane[1]) & lane[2];
s[16] ^= (~lane[2]) & lane[3];
s[17] ^= (~lane[3]) & lane[4];
s[18] ^= (~lane[4]) & lane[0];
s[19] ^= (~lane[0]) & lane[1];
lane[0] = s[20]; lane[1] = s[21]; lane[2] = s[22]; lane[3] = s[23]; lane[4] = s[24];
s[20] ^= (~lane[1]) & lane[2];
s[21] ^= (~lane[2]) & lane[3];
s[22] ^= (~lane[3]) & lane[4];
s[23] ^= (~lane[4]) & lane[0];
s[24] ^= (~lane[0]) & lane[1];
/* Iota */
s[0] ^= rc[round];
}
}
void mbedtls_sha3_init( mbedtls_sha3_context *ctx )
{
if( ctx == NULL )
return;
memset( ctx, 0, sizeof( mbedtls_sha3_context ) );
}
void mbedtls_sha3_free( mbedtls_sha3_context *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_sha3_context ) );
}
void mbedtls_sha3_clone( mbedtls_sha3_context *dst,
const mbedtls_sha3_context *src )
{
if ( dst == NULL || src == NULL )
return;
*dst = *src;
}
/*
* SHA-3 context setup
*/
int mbedtls_sha3_starts( mbedtls_sha3_context *ctx, mbedtls_sha3_id id )
{
mbedtls_sha3_family_functions *p = NULL;
if( ctx == NULL )
return( MBEDTLS_ERR_SHA3_BAD_INPUT_DATA );
for( p = sha3_families; p->id != MBEDTLS_SHA3_NONE; p++ )
{
if( p->id == id )
break;
}
if( p == NULL || p->id == MBEDTLS_SHA3_NONE )
return( MBEDTLS_ERR_SHA3_BAD_INPUT_DATA );
ctx->id = id;
ctx->r = p->r;
ctx->olen = p->olen / 8;
ctx->xor_byte = p->xor_byte;
ctx->max_block_size = ctx->r / 8;
memset( ctx->state, 0, sizeof( ctx->state ) );
ctx->index = 0;
return( 0 );
}
/*
* SHA-3 process buffer
*/
int mbedtls_sha3_update( mbedtls_sha3_context *ctx,
const uint8_t *input,
size_t ilen )
{
if( ctx == NULL )
return( MBEDTLS_ERR_SHA3_BAD_INPUT_DATA );
if( ilen == 0 || input == NULL )
return( 0 );
while( ilen-- > 0 )
{
ABSORB( ctx, ctx->index, *input++ );
if( ( ctx->index = ( ctx->index + 1) % ctx->max_block_size ) == 0 )
keccak_f1600( ctx );
}
return( 0 );
}
int mbedtls_sha3_finish( mbedtls_sha3_context *ctx,
uint8_t *output, size_t olen )
{
if( ctx == NULL || output == NULL )
return( MBEDTLS_ERR_SHA3_BAD_INPUT_DATA );
/* Catch SHA-3 families, with fixed output length */
if( ctx->olen > 0 )
{
if ( ctx->olen > olen )
return( MBEDTLS_ERR_SHA3_BAD_INPUT_DATA );
olen = ctx->olen;
}
ABSORB( ctx, ctx->index, ctx->xor_byte );
ABSORB( ctx, ctx->max_block_size - 1, 0x80 );
keccak_f1600( ctx );
ctx->index = 0;
while( olen-- > 0 )
{
*output++ = SQUEEZE( ctx, ctx->index );
if( ( ctx->index = ( ctx->index + 1) % ctx->max_block_size ) == 0 )
keccak_f1600( ctx );
}
return( 0 );
}
/*
* output = SHA3( input buffer )
*/
int mbedtls_sha3( mbedtls_sha3_id id, const uint8_t *input,
size_t ilen, uint8_t *output, size_t olen )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_sha3_context ctx;
mbedtls_sha3_init( &ctx );
/* Sanity checks are performed in every mbedtls_sha3_xxx() */
if( ( ret = mbedtls_sha3_starts( &ctx, id ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha3_update( &ctx, input, ilen ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha3_finish( &ctx, output, olen ) ) != 0 )
goto exit;
exit:
mbedtls_sha3_free( &ctx );
return( ret );
}
#endif /* MBEDTLS_SHA3_C */