mbedtls/library/bignum_core.c
Gilles Peskine 3b63d09fea Make the main loop's logic clearer
The loop ends when there are no more bits to process, with one twist: when
that happens, we need to clear the window one last time. Since the window
does not start empty (E_limbs==0 is not supported), the loop always starts
with a non-empty window and some bits to process. So it's correct to move
the window clearing logic to the end of the loop. This lets us exit the loop
when the end of the exponent is reached.

It would be clearer not to do the final window clearing inside the loop, so
we wouldn't need to repeat the loop termination condition (end of exponent
reached) inside the loop. However, this requires duplicating the code to
clear the window. Empirically, this causes a significant code size increase,
even if the window clearing code is placed into a function.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
2022-11-22 21:22:54 +00:00

771 lines
21 KiB
C

/*
* Core bignum functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include <string.h>
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#include "constant_time_internal.h"
#include "mbedtls/platform.h"
#include "bignum_core.h"
#include "bn_mul.h"
#include "constant_time_internal.h"
size_t mbedtls_mpi_core_clz( mbedtls_mpi_uint a )
{
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for( j = 0; j < biL; j++ )
{
if( a & mask ) break;
mask >>= 1;
}
return( j );
}
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *A, size_t A_limbs )
{
size_t i, j;
if( A_limbs == 0 )
return( 0 );
for( i = A_limbs - 1; i > 0; i-- )
if( A[i] != 0 )
break;
j = biL - mbedtls_mpi_core_clz( A[i] );
return( ( i * biL ) + j );
}
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
* into the storage form used by mbedtls_mpi. */
static mbedtls_mpi_uint mpi_bigendian_to_host_c( mbedtls_mpi_uint a )
{
uint8_t i;
unsigned char *a_ptr;
mbedtls_mpi_uint tmp = 0;
for( i = 0, a_ptr = (unsigned char *) &a; i < ciL; i++, a_ptr++ )
{
tmp <<= CHAR_BIT;
tmp |= (mbedtls_mpi_uint) *a_ptr;
}
return( tmp );
}
static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint a )
{
#if defined(__BYTE_ORDER__)
/* Nothing to do on bigendian systems. */
#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
return( a );
#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
/* For GCC and Clang, have builtins for byte swapping. */
#if defined(__GNUC__) && defined(__GNUC_PREREQ)
#if __GNUC_PREREQ(4,3)
#define have_bswap
#endif
#endif
#if defined(__clang__) && defined(__has_builtin)
#if __has_builtin(__builtin_bswap32) && \
__has_builtin(__builtin_bswap64)
#define have_bswap
#endif
#endif
#if defined(have_bswap)
/* The compiler is hopefully able to statically evaluate this! */
switch( sizeof(mbedtls_mpi_uint) )
{
case 4:
return( __builtin_bswap32(a) );
case 8:
return( __builtin_bswap64(a) );
}
#endif
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
#endif /* __BYTE_ORDER__ */
/* Fall back to C-based reordering if we don't know the byte order
* or we couldn't use a compiler-specific builtin. */
return( mpi_bigendian_to_host_c( a ) );
}
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *A,
size_t A_limbs )
{
mbedtls_mpi_uint *cur_limb_left;
mbedtls_mpi_uint *cur_limb_right;
if( A_limbs == 0 )
return;
/*
* Traverse limbs and
* - adapt byte-order in each limb
* - swap the limbs themselves.
* For that, simultaneously traverse the limbs from left to right
* and from right to left, as long as the left index is not bigger
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for( cur_limb_left = A, cur_limb_right = A + ( A_limbs - 1 );
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right-- )
{
mbedtls_mpi_uint tmp;
/* Note that if cur_limb_left == cur_limb_right,
* this code effectively swaps the bytes only once. */
tmp = mpi_bigendian_to_host( *cur_limb_left );
*cur_limb_left = mpi_bigendian_to_host( *cur_limb_right );
*cur_limb_right = tmp;
}
}
void mbedtls_mpi_core_cond_assign( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned char assign )
{
if( X == A )
return;
mbedtls_ct_mpi_uint_cond_assign( limbs, X, A, assign );
}
void mbedtls_mpi_core_cond_swap( mbedtls_mpi_uint *X,
mbedtls_mpi_uint *Y,
size_t limbs,
unsigned char swap )
{
if( X == Y )
return;
/* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask( swap );
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint tmp = X[i];
X[i] = ( X[i] & ~limb_mask ) | ( Y[i] & limb_mask );
Y[i] = ( Y[i] & ~limb_mask ) | ( tmp & limb_mask );
}
}
int mbedtls_mpi_core_read_le( mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
if( X != NULL )
{
memset( X, 0, X_limbs * ciL );
for( size_t i = 0; i < input_length; i++ )
{
size_t offset = ( ( i % ciL ) << 3 );
X[i / ciL] |= ( (mbedtls_mpi_uint) input[i] ) << offset;
}
}
return( 0 );
}
int mbedtls_mpi_core_read_be( mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
/* If X_limbs is 0, input_length must also be 0 (from previous test).
* Nothing to do. */
if( X_limbs == 0 )
return( 0 );
memset( X, 0, X_limbs * ciL );
/* memcpy() with (NULL, 0) is undefined behaviour */
if( input_length != 0 )
{
size_t overhead = ( X_limbs * ciL ) - input_length;
unsigned char *Xp = (unsigned char *) X;
memcpy( Xp + overhead, input, input_length );
}
mbedtls_mpi_core_bigendian_to_host( X, X_limbs );
return( 0 );
}
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes = A_limbs * ciL;
size_t bytes_to_copy;
if( stored_bytes < output_length )
{
bytes_to_copy = stored_bytes;
}
else
{
bytes_to_copy = output_length;
/* The output buffer is smaller than the allocated size of A.
* However A may fit if its leading bytes are zero. */
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( A, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( size_t i = 0; i < bytes_to_copy; i++ )
output[i] = GET_BYTE( A, i );
if( stored_bytes < output_length )
{
/* Write trailing 0 bytes */
memset( output + stored_bytes, 0, output_length - stored_bytes );
}
return( 0 );
}
int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *X,
size_t X_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
stored_bytes = X_limbs * ciL;
if( stored_bytes < output_length )
{
/* There is enough space in the output buffer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = output + output_length - stored_bytes;
memset( output, 0, output_length - stored_bytes );
}
else
{
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = output_length;
p = output;
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( size_t i = 0; i < bytes_to_copy; i++ )
p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
return( 0 );
}
void mbedtls_mpi_core_shift_r( mbedtls_mpi_uint *X, size_t limbs,
size_t count )
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / biL;
v1 = count & (biL - 1);
if( v0 > limbs || ( v0 == limbs && v1 > 0 ) )
{
memset( X, 0, limbs * ciL );
return;
}
/*
* shift by count / limb_size
*/
if( v0 > 0 )
{
for( i = 0; i < limbs - v0; i++ )
X[i] = X[i + v0];
for( ; i < limbs; i++ )
X[i] = 0;
}
/*
* shift by count % limb_size
*/
if( v1 > 0 )
{
for( i = limbs; i > 0; i-- )
{
r1 = X[i - 1] << (biL - v1);
X[i - 1] >>= v1;
X[i - 1] |= r0;
r0 = r1;
}
}
}
mbedtls_mpi_uint mbedtls_mpi_core_add( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs )
{
mbedtls_mpi_uint c = 0;
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint t = c + A[i];
c = ( t < A[i] );
t += B[i];
c += ( t < B[i] );
X[i] = t;
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned cond )
{
mbedtls_mpi_uint c = 0;
/* all-bits 0 if cond is 0, all-bits 1 if cond is non-0 */
const mbedtls_mpi_uint mask = mbedtls_ct_mpi_uint_mask( cond );
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint add = mask & A[i];
mbedtls_mpi_uint t = c + X[i];
c = ( t < X[i] );
t += add;
c += ( t < add );
X[i] = t;
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs )
{
mbedtls_mpi_uint c = 0;
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint z = ( A[i] < c );
mbedtls_mpi_uint t = A[i] - c;
c = ( t < B[i] ) + z;
X[i] = t - B[i];
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0; /* carry */
/*
* It is a documented precondition of this function that d_len >= s_len.
* If that's not the case, we swap these round: this turns what would be
* a buffer overflow into an incorrect result.
*/
if( d_len < s_len )
s_len = d_len;
size_t excess_len = d_len - s_len;
size_t steps_x8 = s_len / 8;
size_t steps_x1 = s_len & 7;
while( steps_x8-- )
{
MULADDC_X8_INIT
MULADDC_X8_CORE
MULADDC_X8_STOP
}
while( steps_x1-- )
{
MULADDC_X1_INIT
MULADDC_X1_CORE
MULADDC_X1_STOP
}
while( excess_len-- )
{
*d += c;
c = ( *d < c );
d++;
}
return( c );
}
/*
* Fast Montgomery initialization (thanks to Tom St Denis).
*/
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init( const mbedtls_mpi_uint *N )
{
mbedtls_mpi_uint x = N[0];
x += ( ( N[0] + 2 ) & 4 ) << 1;
for( unsigned int i = biL; i >= 8; i /= 2 )
x *= ( 2 - ( N[0] * x ) );
return( ~x + 1 );
}
void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_limbs,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T )
{
memset( T, 0, ( 2 * AN_limbs + 1 ) * ciL );
for( size_t i = 0; i < AN_limbs; i++ )
{
/* T = (T + u0*B + u1*N) / 2^biL */
mbedtls_mpi_uint u0 = A[i];
mbedtls_mpi_uint u1 = ( T[0] + u0 * B[0] ) * mm;
(void) mbedtls_mpi_core_mla( T, AN_limbs + 2, B, B_limbs, u0 );
(void) mbedtls_mpi_core_mla( T, AN_limbs + 2, N, AN_limbs, u1 );
T++;
}
/*
* The result we want is (T >= N) ? T - N : T.
*
* For better constant-time properties in this function, we always do the
* subtraction, with the result in X.
*
* We also look to see if there was any carry in the final additions in the
* loop above.
*/
mbedtls_mpi_uint carry = T[AN_limbs];
mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub( X, T, N, AN_limbs );
/*
* Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
*
* T can be in one of 3 ranges:
*
* 1) T < N : (carry, borrow) = (0, 1): we want T
* 2) N <= T < R : (carry, borrow) = (0, 0): we want X
* 3) T >= R : (carry, borrow) = (1, 1): we want X
*
* and (carry, borrow) = (1, 0) can't happen.
*
* So the correct return value is already in X if (carry ^ borrow) = 0,
* but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
*/
mbedtls_ct_mpi_uint_cond_assign( AN_limbs, X, T, (unsigned char) ( carry ^ borrow ) );
}
int mbedtls_mpi_core_get_mont_r2_unsafe( mbedtls_mpi *X,
const mbedtls_mpi *N )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, N->n * 2 * biL ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( X, X, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( X, N->n ) );
cleanup:
return( ret );
}
MBEDTLS_STATIC_TESTABLE
void mbedtls_mpi_core_ct_uint_table_lookup( mbedtls_mpi_uint *dest,
const mbedtls_mpi_uint *table,
size_t limbs,
size_t count,
size_t index )
{
for( size_t i = 0; i < count; i++, table += limbs )
{
unsigned char assign = mbedtls_ct_size_bool_eq( i, index );
mbedtls_mpi_core_cond_assign( dest, table, limbs, assign );
}
}
/* Fill X with n_bytes random bytes.
* X must already have room for those bytes.
* The ordering of the bytes returned from the RNG is suitable for
* deterministic ECDSA (see RFC 6979 §3.3 and the specification of
* mbedtls_mpi_core_random()).
*/
int mbedtls_mpi_core_fill_random(
mbedtls_mpi_uint *X, size_t X_limbs,
size_t n_bytes,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const size_t limbs = CHARS_TO_LIMBS( n_bytes );
const size_t overhead = ( limbs * ciL ) - n_bytes;
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
memset( X, 0, overhead );
memset( (unsigned char *) X + limbs * ciL, 0, ( X_limbs - limbs ) * ciL );
MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X + overhead, n_bytes ) );
mbedtls_mpi_core_bigendian_to_host( X, limbs );
cleanup:
return( ret );
}
/* BEGIN MERGE SLOT 1 */
static size_t exp_mod_get_window_size( size_t Ebits )
{
size_t wsize = ( Ebits > 671 ) ? 6 : ( Ebits > 239 ) ? 5 :
( Ebits > 79 ) ? 4 : 1;
#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
wsize = MBEDTLS_MPI_WINDOW_SIZE;
#endif
return( wsize );
}
static void exp_mod_precompute_window( const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *RR,
size_t welem,
mbedtls_mpi_uint *Wtable,
mbedtls_mpi_uint *temp )
{
/* W[0] = 1 (in Montgomery presentation) */
memset( Wtable, 0, AN_limbs * ciL );
Wtable[0] = 1;
mbedtls_mpi_core_montmul( Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp );
/* W[1] = A * R^2 * R^-1 mod N = A * R mod N */
mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
mbedtls_mpi_core_montmul( W1, A, RR, AN_limbs, N, AN_limbs, mm, temp );
/* W[i+1] = W[i] * W[1], i >= 2 */
mbedtls_mpi_uint *Wprev = W1;
for( size_t i = 2; i < welem; i++ )
{
mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
mbedtls_mpi_core_montmul( Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp );
Wprev = Wcur;
}
}
int mbedtls_mpi_core_exp_mod( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
const mbedtls_mpi_uint *E,
size_t E_limbs,
const mbedtls_mpi_uint *RR )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/* heap allocated memory pool */
mbedtls_mpi_uint *mempool = NULL;
const size_t wsize = exp_mod_get_window_size( E_limbs * biL );
const size_t welem = ( (size_t) 1 ) << wsize;
/* Allocate memory pool and set pointers to parts of it */
const size_t table_limbs = welem * AN_limbs;
const size_t temp_limbs = 2 * AN_limbs + 1;
const size_t select_limbs = AN_limbs;
const size_t total_limbs = table_limbs + temp_limbs + select_limbs;
mempool = mbedtls_calloc( total_limbs, sizeof(mbedtls_mpi_uint) );
if( mempool == NULL )
{
ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
goto cleanup;
}
/* pointers to temporaries within memory pool */
mbedtls_mpi_uint *const Wtable = mempool;
mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
mbedtls_mpi_uint *const temp = Wselect + select_limbs;
/*
* Window precomputation
*/
const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init( N );
/* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
exp_mod_precompute_window( A, N, AN_limbs,
mm, RR,
welem, Wtable, temp );
/*
* Fixed window exponentiation
*/
/* X = 1 (in Montgomery presentation) initially */
memcpy( X, Wtable, AN_limbs * ciL );
/* We'll process the bits of E from most significant
* (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
* (limb_index=0, E_bit_index=0). */
size_t E_limb_index = E_limbs;
size_t E_bit_index = 0;
mbedtls_mpi_uint window = 0;
size_t window_bits = 0;
do
{
/* Square */
mbedtls_mpi_core_montmul( X, X, X, AN_limbs, N, AN_limbs, mm, temp );
/* Insert next exponent bit into window */
if( E_bit_index == 0 )
{
--E_limb_index;
E_bit_index = biL - 1;
}
else
{
--E_bit_index;
}
++window_bits;
window <<= 1;
window |= ( E[E_limb_index] >> E_bit_index ) & 1;
/* Clear window if it's full. Also clear the window at the end,
* when we've finished processing the exponent. */
if( window_bits == wsize ||
( E_bit_index == 0 && E_limb_index == 0 ) )
{
/* Select table entry, square and multiply */
mbedtls_mpi_core_ct_uint_table_lookup( Wselect, Wtable,
AN_limbs, welem, window );
mbedtls_mpi_core_montmul( X, X, Wselect, AN_limbs, N, AN_limbs, mm, temp );
window = 0;
window_bits = 0;
}
}
while( ! ( E_bit_index == 0 && E_limb_index == 0 ) );
/* Convert X back to normal presentation */
const mbedtls_mpi_uint one = 1;
mbedtls_mpi_core_montmul( X, X, &one, 1, N, AN_limbs, mm, temp );
ret = 0;
cleanup:
mbedtls_free( mempool );
return( ret );
}
/* END MERGE SLOT 1 */
/* BEGIN MERGE SLOT 2 */
/* END MERGE SLOT 2 */
/* BEGIN MERGE SLOT 3 */
/* END MERGE SLOT 3 */
/* BEGIN MERGE SLOT 4 */
/* END MERGE SLOT 4 */
/* BEGIN MERGE SLOT 5 */
/* END MERGE SLOT 5 */
/* BEGIN MERGE SLOT 6 */
/* END MERGE SLOT 6 */
/* BEGIN MERGE SLOT 7 */
/* END MERGE SLOT 7 */
/* BEGIN MERGE SLOT 8 */
/* END MERGE SLOT 8 */
/* BEGIN MERGE SLOT 9 */
/* END MERGE SLOT 9 */
/* BEGIN MERGE SLOT 10 */
/* END MERGE SLOT 10 */
#endif /* MBEDTLS_BIGNUM_C */