/* BEGIN_HEADER */ #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" #include "string.h" #include "ctr.h" #if defined(MBEDTLS_THREADING_PTHREAD) #include "mbedtls/threading.h" #endif /* Modes for ctr_drbg_validate */ enum reseed_mode { RESEED_NEVER, /* never reseed */ RESEED_FIRST, /* instantiate, reseed, generate, generate */ RESEED_SECOND, /* instantiate, generate, reseed, generate */ RESEED_ALWAYS /* prediction resistance, no explicit reseed */ }; static size_t test_offset_idx = 0; static size_t test_max_idx = 0; static int mbedtls_test_entropy_func(void *data, unsigned char *buf, size_t len) { const unsigned char *p = (unsigned char *) data; if (test_offset_idx + len > test_max_idx) { return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED; } memcpy(buf, p + test_offset_idx, len); test_offset_idx += len; return 0; } static void ctr_drbg_validate_internal(int reseed_mode, data_t *nonce, int entropy_len_arg, data_t *entropy, data_t *reseed, data_t *add1, data_t *add2, data_t *result) { mbedtls_ctr_drbg_context ctx; mbedtls_ctr_drbg_init(&ctx); unsigned char buf[64]; size_t entropy_chunk_len = (size_t) entropy_len_arg; TEST_ASSERT(entropy_chunk_len <= sizeof(buf)); test_offset_idx = 0; test_max_idx = entropy->len; /* CTR_DRBG_Instantiate(entropy[:entropy->len], nonce, perso, ) * where nonce||perso = nonce[nonce->len] */ mbedtls_ctr_drbg_set_entropy_len(&ctx, entropy_chunk_len); mbedtls_ctr_drbg_set_nonce_len(&ctx, 0); TEST_ASSERT(mbedtls_ctr_drbg_seed( &ctx, mbedtls_test_entropy_func, entropy->x, nonce->x, nonce->len) == 0); if (reseed_mode == RESEED_ALWAYS) { mbedtls_ctr_drbg_set_prediction_resistance( &ctx, MBEDTLS_CTR_DRBG_PR_ON); } if (reseed_mode == RESEED_FIRST) { /* CTR_DRBG_Reseed(entropy[idx:idx+entropy->len], * reseed[:reseed->len]) */ TEST_ASSERT(mbedtls_ctr_drbg_reseed( &ctx, reseed->x, reseed->len) == 0); } /* CTR_DRBG_Generate(result->len * 8 bits, add1[:add1->len]) -> buf */ /* Then reseed if prediction resistance is enabled. */ TEST_ASSERT(mbedtls_ctr_drbg_random_with_add( &ctx, buf, result->len, add1->x, add1->len) == 0); if (reseed_mode == RESEED_SECOND) { /* CTR_DRBG_Reseed(entropy[idx:idx+entropy->len], * reseed[:reseed->len]) */ TEST_ASSERT(mbedtls_ctr_drbg_reseed( &ctx, reseed->x, reseed->len) == 0); } /* CTR_DRBG_Generate(result->len * 8 bits, add2->x[:add2->len]) -> buf */ /* Then reseed if prediction resistance is enabled. */ TEST_ASSERT(mbedtls_ctr_drbg_random_with_add( &ctx, buf, result->len, add2->x, add2->len) == 0); TEST_ASSERT(memcmp(buf, result->x, result->len) == 0); exit: mbedtls_ctr_drbg_free(&ctx); } static const int thread_random_reps = 10; void *thread_random_function(void *ctx); /* only used conditionally in ctr_drbg_threads */ void *thread_random_function(void *ctx) { unsigned char out[16]; memset(out, 0, sizeof(out)); for (int i = 0; i < thread_random_reps; i++) { TEST_EQUAL(mbedtls_ctr_drbg_random((mbedtls_ctr_drbg_context *) ctx, out, sizeof(out)), 0); } exit: return NULL; } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_CTR_DRBG_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void ctr_drbg_special_behaviours() { mbedtls_ctr_drbg_context ctx; unsigned char output[512]; unsigned char additional[512]; mbedtls_ctr_drbg_init(&ctx); memset(output, 0, sizeof(output)); memset(additional, 0, sizeof(additional)); TEST_ASSERT(mbedtls_ctr_drbg_random_with_add(&ctx, output, MBEDTLS_CTR_DRBG_MAX_REQUEST + 1, additional, 16) == MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG); TEST_ASSERT(mbedtls_ctr_drbg_random_with_add(&ctx, output, 16, additional, MBEDTLS_CTR_DRBG_MAX_INPUT + 1) == MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); TEST_ASSERT(mbedtls_ctr_drbg_reseed(&ctx, additional, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + 1) == MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); mbedtls_ctr_drbg_set_entropy_len(&ctx, ~0); TEST_ASSERT(mbedtls_ctr_drbg_reseed(&ctx, additional, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) == MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG); exit: mbedtls_ctr_drbg_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_validate_no_reseed(data_t *add_init, data_t *entropy, data_t *add1, data_t *add2, data_t *result_string) { data_t empty = { 0, 0 }; AES_PSA_INIT(); ctr_drbg_validate_internal(RESEED_NEVER, add_init, entropy->len, entropy, &empty, add1, add2, result_string); AES_PSA_DONE(); goto exit; // goto is needed to avoid warning ( no test assertions in func) } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_validate_pr(data_t *add_init, data_t *entropy, data_t *add1, data_t *add2, data_t *result_string) { data_t empty = { 0, 0 }; AES_PSA_INIT(); ctr_drbg_validate_internal(RESEED_ALWAYS, add_init, entropy->len / 3, entropy, &empty, add1, add2, result_string); AES_PSA_DONE(); goto exit; // goto is needed to avoid warning ( no test assertions in func) } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_validate_reseed_between(data_t *add_init, data_t *entropy, data_t *add1, data_t *add_reseed, data_t *add2, data_t *result_string) { AES_PSA_INIT(); ctr_drbg_validate_internal(RESEED_SECOND, add_init, entropy->len / 2, entropy, add_reseed, add1, add2, result_string); AES_PSA_DONE(); goto exit; // goto is needed to avoid warning ( no test assertions in func) } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_validate_reseed_first(data_t *add_init, data_t *entropy, data_t *add1, data_t *add_reseed, data_t *add2, data_t *result_string) { AES_PSA_INIT(); ctr_drbg_validate_internal(RESEED_FIRST, add_init, entropy->len / 2, entropy, add_reseed, add1, add2, result_string); AES_PSA_DONE(); goto exit; // goto is needed to avoid warning ( no test assertions in func) } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_entropy_strength(int expected_bit_strength) { unsigned char entropy[/*initial entropy*/ MBEDTLS_CTR_DRBG_ENTROPY_LEN + /*nonce*/ MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN + /*reseed*/ MBEDTLS_CTR_DRBG_ENTROPY_LEN]; mbedtls_ctr_drbg_context ctx; size_t last_idx; size_t byte_strength = expected_bit_strength / 8; mbedtls_ctr_drbg_init(&ctx); AES_PSA_INIT(); test_offset_idx = 0; test_max_idx = sizeof(entropy); memset(entropy, 0, sizeof(entropy)); /* The initial seeding must grab at least byte_strength bytes of entropy * for the entropy input and byte_strength/2 bytes for a nonce. */ TEST_ASSERT(mbedtls_ctr_drbg_seed(&ctx, mbedtls_test_entropy_func, entropy, NULL, 0) == 0); TEST_ASSERT(test_offset_idx >= (byte_strength * 3 + 1) / 2); last_idx = test_offset_idx; /* A reseed must grab at least byte_strength bytes of entropy. */ TEST_ASSERT(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0) == 0); TEST_ASSERT(test_offset_idx - last_idx >= byte_strength); exit: mbedtls_ctr_drbg_free(&ctx); AES_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void ctr_drbg_entropy_usage(int entropy_nonce_len) { unsigned char out[16]; unsigned char add[16]; unsigned char entropy[1024]; mbedtls_ctr_drbg_context ctx; size_t i, reps = 10; size_t expected_idx = 0; mbedtls_ctr_drbg_init(&ctx); AES_PSA_INIT(); test_offset_idx = 0; test_max_idx = sizeof(entropy); memset(entropy, 0, sizeof(entropy)); memset(out, 0, sizeof(out)); memset(add, 0, sizeof(add)); if (entropy_nonce_len >= 0) { TEST_ASSERT(mbedtls_ctr_drbg_set_nonce_len(&ctx, entropy_nonce_len) == 0); } /* Set reseed interval before seed */ mbedtls_ctr_drbg_set_reseed_interval(&ctx, 2 * reps); /* Init must use entropy */ TEST_ASSERT(mbedtls_ctr_drbg_seed(&ctx, mbedtls_test_entropy_func, entropy, NULL, 0) == 0); expected_idx += MBEDTLS_CTR_DRBG_ENTROPY_LEN; if (entropy_nonce_len >= 0) { expected_idx += entropy_nonce_len; } else { expected_idx += MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN; } TEST_EQUAL(test_offset_idx, expected_idx); /* By default, PR is off, and reseed interval was set to * 2 * reps so the next few calls should not use entropy */ for (i = 0; i < reps; i++) { TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out) - 4) == 0); TEST_ASSERT(mbedtls_ctr_drbg_random_with_add(&ctx, out, sizeof(out) - 4, add, sizeof(add)) == 0); } TEST_EQUAL(test_offset_idx, expected_idx); /* While at it, make sure we didn't write past the requested length */ TEST_ASSERT(out[sizeof(out) - 4] == 0); TEST_ASSERT(out[sizeof(out) - 3] == 0); TEST_ASSERT(out[sizeof(out) - 2] == 0); TEST_ASSERT(out[sizeof(out) - 1] == 0); /* There have been 2 * reps calls to random. The next call should reseed */ TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)) == 0); expected_idx += MBEDTLS_CTR_DRBG_ENTROPY_LEN; TEST_EQUAL(test_offset_idx, expected_idx); /* Set reseed interval after seed */ mbedtls_ctr_drbg_set_reseed_interval(&ctx, 4 * reps + 1); /* The next few calls should not reseed */ for (i = 0; i < (2 * reps); i++) { TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)) == 0); TEST_ASSERT(mbedtls_ctr_drbg_random_with_add(&ctx, out, sizeof(out), add, sizeof(add)) == 0); } TEST_EQUAL(test_offset_idx, expected_idx); /* Call update with too much data (sizeof(entropy) > MAX(_SEED)_INPUT). * Make sure it's detected as an error and doesn't cause memory * corruption. */ TEST_ASSERT(mbedtls_ctr_drbg_update( &ctx, entropy, sizeof(entropy)) != 0); /* Now enable PR, so the next few calls should all reseed */ mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON); TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)) == 0); expected_idx += MBEDTLS_CTR_DRBG_ENTROPY_LEN; TEST_EQUAL(test_offset_idx, expected_idx); /* Finally, check setting entropy_len */ mbedtls_ctr_drbg_set_entropy_len(&ctx, 42); TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)) == 0); expected_idx += 42; TEST_EQUAL(test_offset_idx, expected_idx); mbedtls_ctr_drbg_set_entropy_len(&ctx, 13); TEST_ASSERT(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)) == 0); expected_idx += 13; TEST_EQUAL(test_offset_idx, expected_idx); exit: mbedtls_ctr_drbg_free(&ctx); AES_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_THREADING_PTHREAD:!MBEDTLS_CTR_DRBG_USE_128_BIT_KEY:!MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ void ctr_drbg_threads(data_t *expected_result, int reseed, int arg_thread_count) { size_t thread_count = (size_t) arg_thread_count; mbedtls_test_thread_t *threads = NULL; unsigned char out[16]; unsigned char *entropy = NULL; const size_t n_random_calls = thread_count * thread_random_reps + 1; /* This is a known-answer test, and although tests use a mock entropy * function the input entropy length will still affect the output. * We therefore need to pick a fixed entropy length, rather than using the * default entropy length (MBEDTLS_CTR_DRBG_ENTROPY_LEN). We've chosen to * use the default value of MBEDTLS_CTR_DRBG_ENTROPY_LEN for SHA-512, * as this was the value used when the expected answers were calculated. */ const size_t entropy_len = 48; mbedtls_ctr_drbg_context ctx; mbedtls_ctr_drbg_init(&ctx); AES_PSA_INIT(); TEST_CALLOC(threads, sizeof(mbedtls_test_thread_t) * thread_count); memset(out, 0, sizeof(out)); test_offset_idx = 0; /* Need to set a non-default fixed entropy len, to ensure same output across * all configs - see above for details. */ mbedtls_ctr_drbg_set_entropy_len(&ctx, entropy_len); if (reseed == 0) { mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_OFF); mbedtls_ctr_drbg_set_reseed_interval(&ctx, n_random_calls + 1); TEST_CALLOC(entropy, entropy_len + MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN); test_max_idx = entropy_len + MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN; } else { const size_t entropy_size = ((n_random_calls + 1) * entropy_len) + MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN; mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON); TEST_CALLOC(entropy, entropy_size); test_max_idx = entropy_size; } TEST_EQUAL( mbedtls_ctr_drbg_seed(&ctx, mbedtls_test_entropy_func, entropy, NULL, 0), 0); for (size_t i = 0; i < thread_count; i++) { TEST_EQUAL( mbedtls_test_thread_create(&threads[i], thread_random_function, (void *) &ctx), 0); } for (size_t i = 0; i < thread_count; i++) { TEST_EQUAL(mbedtls_test_thread_join(&threads[i]), 0); } /* Take a last output for comparing and thus verifying the DRBG state */ TEST_EQUAL(mbedtls_ctr_drbg_random(&ctx, out, sizeof(out)), 0); TEST_MEMORY_COMPARE(out, sizeof(out), expected_result->x, expected_result->len); exit: mbedtls_ctr_drbg_free(&ctx); mbedtls_free(entropy); mbedtls_free(threads); AES_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_FS_IO */ void ctr_drbg_seed_file(char *path, int ret) { mbedtls_ctr_drbg_context ctx; mbedtls_ctr_drbg_init(&ctx); AES_PSA_INIT(); TEST_ASSERT(mbedtls_ctr_drbg_seed(&ctx, mbedtls_test_rnd_std_rand, NULL, NULL, 0) == 0); TEST_ASSERT(mbedtls_ctr_drbg_write_seed_file(&ctx, path) == ret); TEST_ASSERT(mbedtls_ctr_drbg_update_seed_file(&ctx, path) == ret); exit: mbedtls_ctr_drbg_free(&ctx); AES_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */ void ctr_drbg_selftest() { AES_PSA_INIT(); TEST_ASSERT(mbedtls_ctr_drbg_self_test(1) == 0); AES_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void ctr_increment_rollover() { uint8_t c[16]; uint8_t r[16]; // test all increments from 2^n - 1 to 2^n (i.e. where we roll over into the next bit) for (int n = 0; n <= 128; n++) { memset(c, 0, 16); memset(r, 0, 16); // set least significant (highest address) n bits to 1, i.e. generate (2^n - 1) for (int i = 0; i < n; i++) { int bit = i % 8; int byte = (i / 8); c[15 - byte] |= 1 << bit; } // increment to get 2^n mbedtls_ctr_increment_counter(c); // now generate a reference result equal to 2^n - i.e. set only bit (n + 1) // if n == 127, this will not set any bits (i.e. wraps to 0). int bit = n % 8; int byte = n / 8; if (byte < 16) { r[15 - byte] = 1 << bit; } TEST_MEMORY_COMPARE(c, 16, r, 16); } uint64_t lsb = 10, msb = 20; MBEDTLS_PUT_UINT64_BE(msb, c, 0); MBEDTLS_PUT_UINT64_BE(lsb, c, 8); memcpy(r, c, 16); mbedtls_ctr_increment_counter(c); for (int i = 15; i >= 0; i--) { r[i] += 1; if (r[i] != 0) { break; } } TEST_MEMORY_COMPARE(c, 16, r, 16); } /* END_CASE */ /* BEGIN_CASE */ void ctr_increment(data_t *x) { uint8_t c[16]; uint8_t r[16]; // initialise c and r from test argument memset(c, 0, 16); memcpy(c, x->x, x->len); memcpy(r, c, 16); // increment c mbedtls_ctr_increment_counter(c); // increment reference for (int i = 15; i >= 0; i--) { r[i] += 1; if (r[i] != 0) { break; } } // test that mbedtls_ctr_increment_counter behaviour matches reference TEST_MEMORY_COMPARE(c, 16, r, 16); } /* END_CASE */