/** * MD API multi-part HMAC demonstration. * * This programs computes the HMAC of two messages using the multi-part API. * * This is a companion to psa/hmac_demo.c, doing the same operations with the * legacy MD API. The goal is that comparing the two programs will help people * migrating to the PSA Crypto API. * * When it comes to multi-part HMAC operations, the `mbedtls_md_context` * serves a dual purpose (1) hold the key, and (2) save progress information * for the current operation. With PSA those roles are held by two disinct * objects: (1) a psa_key_id_t to hold the key, and (2) a psa_operation_t for * multi-part progress. * * This program and its companion psa/hmac_demo.c illustrate this by doing the * same sequence of multi-part HMAC computation with both APIs; looking at the * two side by side should make the differences and similarities clear. */ /* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ /* First include Mbed TLS headers to get the Mbed TLS configuration and * platform definitions that we'll use in this program. Also include * standard C headers for functions we'll use here. */ #include "mbedtls/build_info.h" #include "mbedtls/md.h" #include "mbedtls/platform_util.h" // for mbedtls_platform_zeroize #include #include /* If the build options we need are not enabled, compile a placeholder. */ #if !defined(MBEDTLS_MD_C) int main(void) { printf("MBEDTLS_MD_C not defined\r\n"); return 0; } #else /* The real program starts here. */ /* Dummy inputs for HMAC */ const unsigned char msg1_part1[] = { 0x01, 0x02 }; const unsigned char msg1_part2[] = { 0x03, 0x04 }; const unsigned char msg2_part1[] = { 0x05, 0x05 }; const unsigned char msg2_part2[] = { 0x06, 0x06 }; /* Dummy key material - never do this in production! * This example program uses SHA-256, so a 32-byte key makes sense. */ const unsigned char key_bytes[32] = { 0 }; /* Print the contents of a buffer in hex */ static void print_buf(const char *title, unsigned char *buf, size_t len) { printf("%s:", title); for (size_t i = 0; i < len; i++) { printf(" %02x", buf[i]); } printf("\n"); } /* Run an Mbed TLS function and bail out if it fails. * A string description of the error code can be recovered with: * programs/util/strerror */ #define CHK(expr) \ do \ { \ ret = (expr); \ if (ret != 0) \ { \ printf("Error %d at line %d: %s\n", \ ret, \ __LINE__, \ #expr); \ goto exit; \ } \ } while (0) /* * This function demonstrates computation of the HMAC of two messages using * the multipart API. */ static int hmac_demo(void) { int ret; const mbedtls_md_type_t alg = MBEDTLS_MD_SHA256; unsigned char out[MBEDTLS_MD_MAX_SIZE]; // safe but not optimal mbedtls_md_context_t ctx; mbedtls_md_init(&ctx); /* prepare context and load key */ // the last argument to setup is 1 to enable HMAC (not just hashing) const mbedtls_md_info_t *info = mbedtls_md_info_from_type(alg); CHK(mbedtls_md_setup(&ctx, info, 1)); CHK(mbedtls_md_hmac_starts(&ctx, key_bytes, sizeof(key_bytes))); /* compute HMAC(key, msg1_part1 | msg1_part2) */ CHK(mbedtls_md_hmac_update(&ctx, msg1_part1, sizeof(msg1_part1))); CHK(mbedtls_md_hmac_update(&ctx, msg1_part2, sizeof(msg1_part2))); CHK(mbedtls_md_hmac_finish(&ctx, out)); print_buf("msg1", out, mbedtls_md_get_size(info)); /* compute HMAC(key, msg2_part1 | msg2_part2) */ CHK(mbedtls_md_hmac_reset(&ctx)); // prepare for new operation CHK(mbedtls_md_hmac_update(&ctx, msg2_part1, sizeof(msg2_part1))); CHK(mbedtls_md_hmac_update(&ctx, msg2_part2, sizeof(msg2_part2))); CHK(mbedtls_md_hmac_finish(&ctx, out)); print_buf("msg2", out, mbedtls_md_get_size(info)); exit: mbedtls_md_free(&ctx); mbedtls_platform_zeroize(out, sizeof(out)); return ret; } int main(void) { int ret; CHK(hmac_demo()); exit: return ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE; } #endif