/** * PSA API multi-part AEAD demonstration. * * This program AEAD-encrypts a message, using the algorithm and key size * specified on the command line, using the multi-part API. * * It comes with a companion program cipher/cipher_aead_demo.c, which does the * same operations with the legacy Cipher API. The goal is that comparing the * two programs will help people migrating to the PSA Crypto API. * * When used with multi-part AEAD operations, the `mbedtls_cipher_context` * serves a triple purpose (1) hold the key, (2) store the algorithm when no * operation is active, and (3) save progress information for the current * operation. With PSA those roles are held by disinct objects: (1) a * psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the * algorithm, and (3) a psa_operation_t for multi-part progress. * * On the other hand, with PSA, the algorithms encodes the desired tag length; * with Cipher the desired tag length needs to be tracked separately. * * This program and its companion cipher/cipher_aead_demo.c illustrate this by * doing the same sequence of multi-part AEAD computation with both APIs; * looking at the two side by side should make the differences and * similarities clear. */ /* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ /* First include Mbed TLS headers to get the Mbed TLS configuration and * platform definitions that we'll use in this program. Also include * standard C headers for functions we'll use here. */ #include "mbedtls/build_info.h" #include "psa/crypto.h" #include #include #include /* If the build options we need are not enabled, compile a placeholder. */ #if !defined(MBEDTLS_PSA_CRYPTO_C) || \ !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \ !defined(MBEDTLS_CHACHAPOLY_C) || \ defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER) int main(void) { printf("MBEDTLS_PSA_CRYPTO_C and/or " "MBEDTLS_AES_C and/or MBEDTLS_GCM_C and/or " "MBEDTLS_CHACHAPOLY_C not defined, and/or " "MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER defined\r\n"); return 0; } #else /* The real program starts here. */ const char usage[] = "Usage: aead_demo [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]"; /* Dummy data for encryption: IV/nonce, additional data, 2-part message */ const unsigned char iv1[12] = { 0x00 }; const unsigned char add_data1[] = { 0x01, 0x02 }; const unsigned char msg1_part1[] = { 0x03, 0x04 }; const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 }; /* Dummy data (2nd message) */ const unsigned char iv2[12] = { 0x10 }; const unsigned char add_data2[] = { 0x11, 0x12 }; const unsigned char msg2_part1[] = { 0x13, 0x14 }; const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 }; /* Maximum total size of the messages */ #define MSG1_SIZE (sizeof(msg1_part1) + sizeof(msg1_part2)) #define MSG2_SIZE (sizeof(msg2_part1) + sizeof(msg2_part2)) #define MSG_MAX_SIZE (MSG1_SIZE > MSG2_SIZE ? MSG1_SIZE : MSG2_SIZE) /* Dummy key material - never do this in production! * 32-byte is enough to all the key size supported by this program. */ const unsigned char key_bytes[32] = { 0x2a }; /* Print the contents of a buffer in hex */ static void print_buf(const char *title, uint8_t *buf, size_t len) { printf("%s:", title); for (size_t i = 0; i < len; i++) { printf(" %02x", buf[i]); } printf("\n"); } /* Run a PSA function and bail out if it fails. * The symbolic name of the error code can be recovered using: * programs/psa/psa_constant_name status */ #define PSA_CHECK(expr) \ do \ { \ status = (expr); \ if (status != PSA_SUCCESS) \ { \ printf("Error %d at line %d: %s\n", \ (int) status, \ __LINE__, \ #expr); \ goto exit; \ } \ } \ while (0) /* * Prepare encryption material: * - interpret command-line argument * - set up key * - outputs: key and algorithm, which together hold all the information */ static psa_status_t aead_prepare(const char *info, psa_key_id_t *key, psa_algorithm_t *alg) { psa_status_t status; /* Convert arg to alg + key_bits + key_type */ size_t key_bits; psa_key_type_t key_type; if (strcmp(info, "aes128-gcm") == 0) { *alg = PSA_ALG_GCM; key_bits = 128; key_type = PSA_KEY_TYPE_AES; } else if (strcmp(info, "aes256-gcm") == 0) { *alg = PSA_ALG_GCM; key_bits = 256; key_type = PSA_KEY_TYPE_AES; } else if (strcmp(info, "aes128-gcm_8") == 0) { *alg = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 8); key_bits = 128; key_type = PSA_KEY_TYPE_AES; } else if (strcmp(info, "chachapoly") == 0) { *alg = PSA_ALG_CHACHA20_POLY1305; key_bits = 256; key_type = PSA_KEY_TYPE_CHACHA20; } else { puts(usage); return PSA_ERROR_INVALID_ARGUMENT; } /* Prepare key attributes */ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT); psa_set_key_algorithm(&attributes, *alg); psa_set_key_type(&attributes, key_type); psa_set_key_bits(&attributes, key_bits); // optional /* Import key */ PSA_CHECK(psa_import_key(&attributes, key_bytes, key_bits / 8, key)); exit: return status; } /* * Print out some information. * * All of this information was present in the command line argument, but his * function demonstrates how each piece can be recovered from (key, alg). */ static void aead_info(psa_key_id_t key, psa_algorithm_t alg) { psa_key_attributes_t attr = PSA_KEY_ATTRIBUTES_INIT; (void) psa_get_key_attributes(key, &attr); psa_key_type_t key_type = psa_get_key_type(&attr); size_t key_bits = psa_get_key_bits(&attr); psa_algorithm_t base_alg = PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(alg); size_t tag_len = PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg); const char *type_str = key_type == PSA_KEY_TYPE_AES ? "AES" : key_type == PSA_KEY_TYPE_CHACHA20 ? "Chacha" : "???"; const char *base_str = base_alg == PSA_ALG_GCM ? "GCM" : base_alg == PSA_ALG_CHACHA20_POLY1305 ? "ChachaPoly" : "???"; printf("%s, %u, %s, %u\n", type_str, (unsigned) key_bits, base_str, (unsigned) tag_len); } /* * Encrypt a 2-part message. */ static int aead_encrypt(psa_key_id_t key, psa_algorithm_t alg, const unsigned char *iv, size_t iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *part1, size_t part1_len, const unsigned char *part2, size_t part2_len) { psa_status_t status; size_t olen, olen_tag; unsigned char out[PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(MSG_MAX_SIZE)]; unsigned char *p = out, *end = out + sizeof(out); unsigned char tag[PSA_AEAD_TAG_MAX_SIZE]; psa_aead_operation_t op = PSA_AEAD_OPERATION_INIT; PSA_CHECK(psa_aead_encrypt_setup(&op, key, alg)); PSA_CHECK(psa_aead_set_nonce(&op, iv, iv_len)); PSA_CHECK(psa_aead_update_ad(&op, ad, ad_len)); PSA_CHECK(psa_aead_update(&op, part1, part1_len, p, end - p, &olen)); p += olen; PSA_CHECK(psa_aead_update(&op, part2, part2_len, p, end - p, &olen)); p += olen; PSA_CHECK(psa_aead_finish(&op, p, end - p, &olen, tag, sizeof(tag), &olen_tag)); p += olen; memcpy(p, tag, olen_tag); p += olen_tag; olen = p - out; print_buf("out", out, olen); exit: psa_aead_abort(&op); // required on errors, harmless on success return status; } /* * AEAD demo: set up key/alg, print out info, encrypt messages. */ static psa_status_t aead_demo(const char *info) { psa_status_t status; psa_key_id_t key; psa_algorithm_t alg; PSA_CHECK(aead_prepare(info, &key, &alg)); aead_info(key, alg); PSA_CHECK(aead_encrypt(key, alg, iv1, sizeof(iv1), add_data1, sizeof(add_data1), msg1_part1, sizeof(msg1_part1), msg1_part2, sizeof(msg1_part2))); PSA_CHECK(aead_encrypt(key, alg, iv2, sizeof(iv2), add_data2, sizeof(add_data2), msg2_part1, sizeof(msg2_part1), msg2_part2, sizeof(msg2_part2))); exit: psa_destroy_key(key); return status; } /* * Main function */ int main(int argc, char **argv) { psa_status_t status = PSA_SUCCESS; /* Check usage */ if (argc != 2) { puts(usage); return EXIT_FAILURE; } /* Initialize the PSA crypto library. */ PSA_CHECK(psa_crypto_init()); /* Run the demo */ PSA_CHECK(aead_demo(argv[1])); /* Deinitialize the PSA crypto library. */ mbedtls_psa_crypto_free(); exit: return status == PSA_SUCCESS ? EXIT_SUCCESS : EXIT_FAILURE; } #endif