/* * TCP/IP or UDP/IP networking functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ /* Enable definition of getaddrinfo() even when compiling with -std=c99. Must * be set before mbedtls_config.h, which pulls in glibc's features.h indirectly. * Harmless on other platforms. */ #ifndef _POSIX_C_SOURCE #define _POSIX_C_SOURCE 200112L #endif #ifndef _XOPEN_SOURCE #define _XOPEN_SOURCE 600 /* sockaddr_storage */ #endif #include "ssl_misc.h" #if defined(MBEDTLS_NET_C) #if !defined(unix) && !defined(__unix__) && !defined(__unix) && \ !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \ !defined(__HAIKU__) && !defined(__midipix__) #error "This module only works on Unix and Windows, see MBEDTLS_NET_C in mbedtls_config.h" #endif #include "mbedtls/platform.h" #include "mbedtls/net_sockets.h" #include "mbedtls/error.h" #include #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) #define IS_EINTR(ret) ((ret) == WSAEINTR) #include #include #include #if (_WIN32_WINNT < 0x0501) #include #endif #if defined(_MSC_VER) #if defined(_WIN32_WCE) #pragma comment( lib, "ws2.lib" ) #else #pragma comment( lib, "ws2_32.lib" ) #endif #endif /* _MSC_VER */ #define read(fd, buf, len) recv(fd, (char *) (buf), (int) (len), 0) #define write(fd, buf, len) send(fd, (char *) (buf), (int) (len), 0) #define close(fd) closesocket(fd) static int wsa_init_done = 0; #else /* ( _WIN32 || _WIN32_WCE ) && !EFIX64 && !EFI32 */ #include #include #include #include #include #include #include #include #include #include #define IS_EINTR(ret) ((ret) == EINTR) #define SOCKET int #endif /* ( _WIN32 || _WIN32_WCE ) && !EFIX64 && !EFI32 */ /* Some MS functions want int and MSVC warns if we pass size_t, * but the standard functions use socklen_t, so cast only for MSVC */ #if defined(_MSC_VER) #define MSVC_INT_CAST (int) #else #define MSVC_INT_CAST #endif #include #if defined(MBEDTLS_HAVE_TIME) #include #endif #include /* * Prepare for using the sockets interface */ static int net_prepare(void) { #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) WSADATA wsaData; if (wsa_init_done == 0) { if (WSAStartup(MAKEWORD(2, 0), &wsaData) != 0) { return MBEDTLS_ERR_NET_SOCKET_FAILED; } wsa_init_done = 1; } #else #if !defined(EFIX64) && !defined(EFI32) signal(SIGPIPE, SIG_IGN); #endif #endif return 0; } /* * Return 0 if the file descriptor is valid, an error otherwise. * If for_select != 0, check whether the file descriptor is within the range * allowed for fd_set used for the FD_xxx macros and the select() function. */ static int check_fd(int fd, int for_select) { if (fd < 0) { return MBEDTLS_ERR_NET_INVALID_CONTEXT; } #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) (void) for_select; #else /* A limitation of select() is that it only works with file descriptors * that are strictly less than FD_SETSIZE. This is a limitation of the * fd_set type. Error out early, because attempting to call FD_SET on a * large file descriptor is a buffer overflow on typical platforms. */ if (for_select && fd >= FD_SETSIZE) { return MBEDTLS_ERR_NET_POLL_FAILED; } #endif return 0; } /* * Initialize a context */ void mbedtls_net_init(mbedtls_net_context *ctx) { ctx->fd = -1; } /* * Initiate a TCP connection with host:port and the given protocol */ int mbedtls_net_connect(mbedtls_net_context *ctx, const char *host, const char *port, int proto) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; struct addrinfo hints, *addr_list, *cur; if ((ret = net_prepare()) != 0) { return ret; } /* Do name resolution with both IPv6 and IPv4 */ memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = proto == MBEDTLS_NET_PROTO_UDP ? SOCK_DGRAM : SOCK_STREAM; hints.ai_protocol = proto == MBEDTLS_NET_PROTO_UDP ? IPPROTO_UDP : IPPROTO_TCP; if (getaddrinfo(host, port, &hints, &addr_list) != 0) { return MBEDTLS_ERR_NET_UNKNOWN_HOST; } /* Try the sockaddrs until a connection succeeds */ ret = MBEDTLS_ERR_NET_UNKNOWN_HOST; for (cur = addr_list; cur != NULL; cur = cur->ai_next) { ctx->fd = (int) socket(cur->ai_family, cur->ai_socktype, cur->ai_protocol); if (ctx->fd < 0) { ret = MBEDTLS_ERR_NET_SOCKET_FAILED; continue; } if (connect(ctx->fd, cur->ai_addr, MSVC_INT_CAST cur->ai_addrlen) == 0) { ret = 0; break; } mbedtls_net_close(ctx); ret = MBEDTLS_ERR_NET_CONNECT_FAILED; } freeaddrinfo(addr_list); return ret; } /* * Create a listening socket on bind_ip:port */ int mbedtls_net_bind(mbedtls_net_context *ctx, const char *bind_ip, const char *port, int proto) { int n, ret; struct addrinfo hints, *addr_list, *cur; if ((ret = net_prepare()) != 0) { return ret; } /* Bind to IPv6 and/or IPv4, but only in the desired protocol */ memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = proto == MBEDTLS_NET_PROTO_UDP ? SOCK_DGRAM : SOCK_STREAM; hints.ai_protocol = proto == MBEDTLS_NET_PROTO_UDP ? IPPROTO_UDP : IPPROTO_TCP; if (bind_ip == NULL) { hints.ai_flags = AI_PASSIVE; } if (getaddrinfo(bind_ip, port, &hints, &addr_list) != 0) { return MBEDTLS_ERR_NET_UNKNOWN_HOST; } /* Try the sockaddrs until a binding succeeds */ ret = MBEDTLS_ERR_NET_UNKNOWN_HOST; for (cur = addr_list; cur != NULL; cur = cur->ai_next) { ctx->fd = (int) socket(cur->ai_family, cur->ai_socktype, cur->ai_protocol); if (ctx->fd < 0) { ret = MBEDTLS_ERR_NET_SOCKET_FAILED; continue; } n = 1; if (setsockopt(ctx->fd, SOL_SOCKET, SO_REUSEADDR, (const char *) &n, sizeof(n)) != 0) { mbedtls_net_close(ctx); ret = MBEDTLS_ERR_NET_SOCKET_FAILED; continue; } if (bind(ctx->fd, cur->ai_addr, MSVC_INT_CAST cur->ai_addrlen) != 0) { mbedtls_net_close(ctx); ret = MBEDTLS_ERR_NET_BIND_FAILED; continue; } /* Listen only makes sense for TCP */ if (proto == MBEDTLS_NET_PROTO_TCP) { if (listen(ctx->fd, MBEDTLS_NET_LISTEN_BACKLOG) != 0) { mbedtls_net_close(ctx); ret = MBEDTLS_ERR_NET_LISTEN_FAILED; continue; } } /* Bind was successful */ ret = 0; break; } freeaddrinfo(addr_list); return ret; } #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) /* * Check if the requested operation would be blocking on a non-blocking socket * and thus 'failed' with a negative return value. */ static int net_would_block(const mbedtls_net_context *ctx) { ((void) ctx); return WSAGetLastError() == WSAEWOULDBLOCK; } #else /* * Check if the requested operation would be blocking on a non-blocking socket * and thus 'failed' with a negative return value. * * Note: on a blocking socket this function always returns 0! */ static int net_would_block(const mbedtls_net_context *ctx) { int err = errno; /* * Never return 'WOULD BLOCK' on a blocking socket */ if ((fcntl(ctx->fd, F_GETFL) & O_NONBLOCK) != O_NONBLOCK) { errno = err; return 0; } switch (errno = err) { #if defined EAGAIN case EAGAIN: #endif #if defined EWOULDBLOCK && EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif return 1; } return 0; } #endif /* ( _WIN32 || _WIN32_WCE ) && !EFIX64 && !EFI32 */ /* * Accept a connection from a remote client */ int mbedtls_net_accept(mbedtls_net_context *bind_ctx, mbedtls_net_context *client_ctx, void *client_ip, size_t buf_size, size_t *cip_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; int type; struct sockaddr_storage client_addr; #if defined(__socklen_t_defined) || defined(_SOCKLEN_T) || \ defined(_SOCKLEN_T_DECLARED) || defined(__DEFINED_socklen_t) || \ defined(socklen_t) || (defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L) socklen_t n = (socklen_t) sizeof(client_addr); socklen_t type_len = (socklen_t) sizeof(type); #else int n = (int) sizeof(client_addr); int type_len = (int) sizeof(type); #endif /* Is this a TCP or UDP socket? */ if (getsockopt(bind_ctx->fd, SOL_SOCKET, SO_TYPE, (void *) &type, &type_len) != 0 || (type != SOCK_STREAM && type != SOCK_DGRAM)) { return MBEDTLS_ERR_NET_ACCEPT_FAILED; } if (type == SOCK_STREAM) { /* TCP: actual accept() */ ret = client_ctx->fd = (int) accept(bind_ctx->fd, (struct sockaddr *) &client_addr, &n); } else { /* UDP: wait for a message, but keep it in the queue */ char buf[1] = { 0 }; ret = (int) recvfrom(bind_ctx->fd, buf, sizeof(buf), MSG_PEEK, (struct sockaddr *) &client_addr, &n); #if defined(_WIN32) if (ret == SOCKET_ERROR && WSAGetLastError() == WSAEMSGSIZE) { /* We know buf is too small, thanks, just peeking here */ ret = 0; } #endif } if (ret < 0) { if (net_would_block(bind_ctx) != 0) { return MBEDTLS_ERR_SSL_WANT_READ; } return MBEDTLS_ERR_NET_ACCEPT_FAILED; } /* UDP: hijack the listening socket to communicate with the client, * then bind a new socket to accept new connections */ if (type != SOCK_STREAM) { struct sockaddr_storage local_addr; int one = 1; if (connect(bind_ctx->fd, (struct sockaddr *) &client_addr, n) != 0) { return MBEDTLS_ERR_NET_ACCEPT_FAILED; } client_ctx->fd = bind_ctx->fd; bind_ctx->fd = -1; /* In case we exit early */ n = sizeof(struct sockaddr_storage); if (getsockname(client_ctx->fd, (struct sockaddr *) &local_addr, &n) != 0 || (bind_ctx->fd = (int) socket(local_addr.ss_family, SOCK_DGRAM, IPPROTO_UDP)) < 0 || setsockopt(bind_ctx->fd, SOL_SOCKET, SO_REUSEADDR, (const char *) &one, sizeof(one)) != 0) { return MBEDTLS_ERR_NET_SOCKET_FAILED; } if (bind(bind_ctx->fd, (struct sockaddr *) &local_addr, n) != 0) { return MBEDTLS_ERR_NET_BIND_FAILED; } } if (client_ip != NULL) { if (client_addr.ss_family == AF_INET) { struct sockaddr_in *addr4 = (struct sockaddr_in *) &client_addr; *cip_len = sizeof(addr4->sin_addr.s_addr); if (buf_size < *cip_len) { return MBEDTLS_ERR_NET_BUFFER_TOO_SMALL; } memcpy(client_ip, &addr4->sin_addr.s_addr, *cip_len); } else { struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *) &client_addr; *cip_len = sizeof(addr6->sin6_addr.s6_addr); if (buf_size < *cip_len) { return MBEDTLS_ERR_NET_BUFFER_TOO_SMALL; } memcpy(client_ip, &addr6->sin6_addr.s6_addr, *cip_len); } } return 0; } /* * Set the socket blocking or non-blocking */ int mbedtls_net_set_block(mbedtls_net_context *ctx) { #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) u_long n = 0; return ioctlsocket(ctx->fd, FIONBIO, &n); #else return fcntl(ctx->fd, F_SETFL, fcntl(ctx->fd, F_GETFL) & ~O_NONBLOCK); #endif } int mbedtls_net_set_nonblock(mbedtls_net_context *ctx) { #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) u_long n = 1; return ioctlsocket(ctx->fd, FIONBIO, &n); #else return fcntl(ctx->fd, F_SETFL, fcntl(ctx->fd, F_GETFL) | O_NONBLOCK); #endif } /* * Check if data is available on the socket */ int mbedtls_net_poll(mbedtls_net_context *ctx, uint32_t rw, uint32_t timeout) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; struct timeval tv; fd_set read_fds; fd_set write_fds; int fd = ctx->fd; ret = check_fd(fd, 1); if (ret != 0) { return ret; } #if defined(__has_feature) #if __has_feature(memory_sanitizer) /* Ensure that memory sanitizers consider read_fds and write_fds as * initialized even on platforms such as Glibc/x86_64 where FD_ZERO * is implemented in assembly. */ memset(&read_fds, 0, sizeof(read_fds)); memset(&write_fds, 0, sizeof(write_fds)); #endif #endif FD_ZERO(&read_fds); if (rw & MBEDTLS_NET_POLL_READ) { rw &= ~MBEDTLS_NET_POLL_READ; FD_SET((SOCKET) fd, &read_fds); } FD_ZERO(&write_fds); if (rw & MBEDTLS_NET_POLL_WRITE) { rw &= ~MBEDTLS_NET_POLL_WRITE; FD_SET((SOCKET) fd, &write_fds); } if (rw != 0) { return MBEDTLS_ERR_NET_BAD_INPUT_DATA; } tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000) * 1000; do { ret = select(fd + 1, &read_fds, &write_fds, NULL, timeout == (uint32_t) -1 ? NULL : &tv); } while (IS_EINTR(ret)); if (ret < 0) { return MBEDTLS_ERR_NET_POLL_FAILED; } ret = 0; if (FD_ISSET(fd, &read_fds)) { ret |= MBEDTLS_NET_POLL_READ; } if (FD_ISSET(fd, &write_fds)) { ret |= MBEDTLS_NET_POLL_WRITE; } return ret; } /* * Portable usleep helper */ void mbedtls_net_usleep(unsigned long usec) { #if defined(_WIN32) Sleep((usec + 999) / 1000); #else struct timeval tv; tv.tv_sec = usec / 1000000; #if (defined(__unix__) || defined(__unix) || \ (defined(__APPLE__) && defined(__MACH__))) && !defined(__DJGPP__) tv.tv_usec = (suseconds_t) usec % 1000000; #else tv.tv_usec = usec % 1000000; #endif select(0, NULL, NULL, NULL, &tv); #endif } /* * Read at most 'len' characters */ int mbedtls_net_recv(void *ctx, unsigned char *buf, size_t len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; int fd = ((mbedtls_net_context *) ctx)->fd; ret = check_fd(fd, 0); if (ret != 0) { return ret; } ret = (int) read(fd, buf, len); if (ret < 0) { if (net_would_block(ctx) != 0) { return MBEDTLS_ERR_SSL_WANT_READ; } #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) if (WSAGetLastError() == WSAECONNRESET) { return MBEDTLS_ERR_NET_CONN_RESET; } #else if (errno == EPIPE || errno == ECONNRESET) { return MBEDTLS_ERR_NET_CONN_RESET; } if (errno == EINTR) { return MBEDTLS_ERR_SSL_WANT_READ; } #endif return MBEDTLS_ERR_NET_RECV_FAILED; } return ret; } /* * Read at most 'len' characters, blocking for at most 'timeout' ms */ int mbedtls_net_recv_timeout(void *ctx, unsigned char *buf, size_t len, uint32_t timeout) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; struct timeval tv; fd_set read_fds; int fd = ((mbedtls_net_context *) ctx)->fd; ret = check_fd(fd, 1); if (ret != 0) { return ret; } FD_ZERO(&read_fds); FD_SET((SOCKET) fd, &read_fds); tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000) * 1000; ret = select(fd + 1, &read_fds, NULL, NULL, timeout == 0 ? NULL : &tv); /* Zero fds ready means we timed out */ if (ret == 0) { return MBEDTLS_ERR_SSL_TIMEOUT; } if (ret < 0) { #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) if (WSAGetLastError() == WSAEINTR) { return MBEDTLS_ERR_SSL_WANT_READ; } #else if (errno == EINTR) { return MBEDTLS_ERR_SSL_WANT_READ; } #endif return MBEDTLS_ERR_NET_RECV_FAILED; } /* This call will not block */ return mbedtls_net_recv(ctx, buf, len); } /* * Write at most 'len' characters */ int mbedtls_net_send(void *ctx, const unsigned char *buf, size_t len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; int fd = ((mbedtls_net_context *) ctx)->fd; ret = check_fd(fd, 0); if (ret != 0) { return ret; } ret = (int) write(fd, buf, len); if (ret < 0) { if (net_would_block(ctx) != 0) { return MBEDTLS_ERR_SSL_WANT_WRITE; } #if (defined(_WIN32) || defined(_WIN32_WCE)) && !defined(EFIX64) && \ !defined(EFI32) if (WSAGetLastError() == WSAECONNRESET) { return MBEDTLS_ERR_NET_CONN_RESET; } #else if (errno == EPIPE || errno == ECONNRESET) { return MBEDTLS_ERR_NET_CONN_RESET; } if (errno == EINTR) { return MBEDTLS_ERR_SSL_WANT_WRITE; } #endif return MBEDTLS_ERR_NET_SEND_FAILED; } return ret; } /* * Close the connection */ void mbedtls_net_close(mbedtls_net_context *ctx) { if (ctx->fd == -1) { return; } close(ctx->fd); ctx->fd = -1; } /* * Gracefully close the connection */ void mbedtls_net_free(mbedtls_net_context *ctx) { if (ctx == NULL || ctx->fd == -1) { return; } shutdown(ctx->fd, 2); close(ctx->fd); ctx->fd = -1; } #endif /* MBEDTLS_NET_C */