The PSA Crypto API uses 0 as the initial counter value, but the test vector
in RFC 7539 uses 1. So the unit tests here include an extra leading block.
The expected data for this leading block was calculated with Cryptodome.
#!/usr/bin/env python3
import re
from Cryptodome.Cipher import ChaCha20
key = bytes.fromhex('000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f')
nonce = bytes.fromhex('000000000000004a00000000')
encrypt = lambda pt: ChaCha20.new(key=key, nonce=nonce).encrypt(pt)
# Cryptodome uses counter=0, like PSA Crypto. Prepend a 64-byte input block #0
# so that the plaintext from RFC 7539 starts exactly at block #1.
header = b'The RFC 7539 test vector uses counter=1, but PSA uses counter=0.'
assert(len(header) == 64)
sunscreen = b"Ladies and Gentlemen of the class of '99: If I could offer you only one tip for the future, sunscreen would be it."
plaintext = header + sunscreen
zeros = b'\x00' * len(plaintext)
keystream = encrypt(zeros)
ciphertext = encrypt(plaintext)
print('RFC 7539 §2.4.2')
print('Keystream:')
print(re.sub(r'(..)', r'\1:', keystream[64:].hex()))
print('Ciphertext Subscreen:')
print(re.sub(r'(..)', r'\1 ', ciphertext[64:].hex()))
print('')
print(f"""\
PSA symmetric decrypt: ChaCha20, RFC7539 keystream
depends_on:PSA_WANT_ALG_STREAM_CIPHER:PSA_WANT_KEY_TYPE_CHACHA20
# Keystream from RFC 7539 §2.4.2, with an extra 64-byte output block prepended
# because the test vector starts at counter=1 but our API starts at counter=0.
cipher_decrypt:PSA_ALG_STREAM_CIPHER:PSA_KEY_TYPE_CHACHA20:"{key.hex()}":"{nonce.hex()}":"{zeros.hex()}":"{keystream.hex()}"
PSA symmetric decrypt: ChaCha20, RFC7539 sunscreen
depends_on:PSA_WANT_ALG_STREAM_CIPHER:PSA_WANT_KEY_TYPE_CHACHA20
# Test vector from RFC 7539 §2.4.2, with an extra 64-byte block prepended
# because the test vector starts at counter=1 but our API starts at counter=0.
cipher_decrypt:PSA_ALG_STREAM_CIPHER:PSA_KEY_TYPE_CHACHA20:"{key.hex()}":"{nonce.hex()}":"{ciphertext.hex()}":"{plaintext.hex()}"
""")
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
The test is based on the AEAD multi-part test, re-using the
design on aead_multipart_internal_func() to test differnet
sequence of psa_mac_update() for MAC update or verify.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Make `PSA symetric decrypt: CCM*-no-tag, input too short (15 bytes)`
depend on MBEDTLS_CCM_C otherwise the multi-part test fails on
the missing CCM* instead on the input length validity for CCM*.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
psa_aead_encrypt_setup() and psa_aead_decrypt_setup() were returning
PSA_ERROR_INVALID_ARGUMENT, while the same failed checks were producing
PSA_ERROR_NOT_SUPPORTED if they happened in psa_aead_encrypt() or
psa_aead_decrypt().
The PSA Crypto API 1.1 spec will specify PSA_ERROR_INVALID_ARGUMENT
in the case that the supplied algorithm is not an AEAD one.
Also move these shared checks to a helper function, to reduce code
duplication and ensure that the functions remain in sync.
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
Extend PSA AEAD testing by adding CCM and ChaChaPoly.
Add more combinations of functions to test the API.
Signed-off-by: Andrzej Kurek <andrzej.kurek@arm.com>
Add dependencies on built-in hash of signature/
signature verification and asymmetric
encryption/decryption tests. The dependency is
not added for tests based on SHA-256 as SHA-256
is always present when PSA is involved (necessary
to the PSA core) and that way most of PSA signature
/verification tests are still run when PSA hash
operations are accelerated.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
PSA_ALG_RSA_PSS algorithm now accepts only the same salt length for
verification that it produces when signing, as documented.
Fixes#4946.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Test the following combinations:
* 1024-bit key, SHA-256, salt=0
* 1024-bit key, SHA-256, salt=31 (1 byte shorter than standard)
* 1024-bit key, SHA-256, salt=32 (standard length)
* 1024-bit key, SHA-256, salt=94 (maximum possible length)
* 1024-bit key, SHA-512, salt=61 (1 byte shorter than standard)
* 1024-bit key, SHA-512, salt=62 (standard = maximum possible length)
* 528-bit key, SHA-512, salt=0 (only possible length)
Test psa_verify_hash() for both PSA_ALG_RSA_PSS and PSA_ALG_RSA_PSS_ANY_SALT
with all of these combinations. For psa_verify_message(), just test once
with the standard length and once with a different length.
Note that as of this commit, both PSA_ALG_RSA_PSS and
PSA_ALG_RSA_PSS_ANY_SALT accept any salt length during verification, hence
all the new test cases are positive.
The verify test cases were generated using the Python script below.
```
from Cryptodome import Hash
from Cryptodome.Hash import SHA512
from Cryptodome import PublicKey
from Cryptodome.PublicKey import RSA
from Cryptodome.Signature import pss
key = {
528: RSA.import_key(bytes.fromhex("30820145020100024300e31c246d46485984261fd174cab3d4357344602ecd793c47dbe54252d37bb350bc634359b19515542080e4724a4b672291be57c7648f51629eaef234e847d99cc65f0203010001024300b166322e09504a5c274b83592f5cf8ce2793a96de5a265abdbe060c641dbc65db0d11c782fe133a7e60aea686d21058d928cad3ef58924c4bb26b9206a03001d0241022200f85d72e463b406ffa282c34b5f0c2d6c2aacf210246af53d5bc7a0b7fa036e1cdb022200ea176c3d9a7fb355fb9fb7707e679b4acfb7bcb645b907e27cdf1764bc340971cd02212e13380342b3dd3083777abf7acc8988ad8a1406069b890f6efd63c57dae31394d022200c3602d3cf537e3cbbda93e072bd8f92965586aae8e5eb20ffc3c8e5fcb1c7b4d7902220098a04f18e48c689ad2f5b9bd404333def54cb2506cd0075c967a2968261e8b8f10")),
1024: RSA.import_key(bytes.fromhex("3082025e02010002818100af057d396ee84fb75fdbb5c2b13c7fe5a654aa8aa2470b541ee1feb0b12d25c79711531249e1129628042dbbb6c120d1443524ef4c0e6e1d8956eeb2077af12349ddeee54483bc06c2c61948cd02b202e796aebd94d3a7cbf859c2c1819c324cb82b9cd34ede263a2abffe4733f077869e8660f7d6834da53d690ef7985f6bc3020301000102818100874bf0ffc2f2a71d14671ddd0171c954d7fdbf50281e4f6d99ea0e1ebcf82faa58e7b595ffb293d1abe17f110b37c48cc0f36c37e84d876621d327f64bbe08457d3ec4098ba2fa0a319fba411c2841ed7be83196a8cdf9daa5d00694bc335fc4c32217fe0488bce9cb7202e59468b1ead119000477db2ca797fac19eda3f58c1024100e2ab760841bb9d30a81d222de1eb7381d82214407f1b975cbbfe4e1a9467fd98adbd78f607836ca5be1928b9d160d97fd45c12d6b52e2c9871a174c66b488113024100c5ab27602159ae7d6f20c3c2ee851e46dc112e689e28d5fcbbf990a99ef8a90b8bb44fd36467e7fc1789ceb663abda338652c3c73f111774902e840565927091024100b6cdbd354f7df579a63b48b3643e353b84898777b48b15f94e0bfc0567a6ae5911d57ad6409cf7647bf96264e9bd87eb95e263b7110b9a1f9f94acced0fafa4d024071195eec37e8d257decfc672b07ae639f10cbb9b0c739d0c809968d644a94e3fd6ed9287077a14583f379058f76a8aecd43c62dc8c0f41766650d725275ac4a1024100bb32d133edc2e048d463388b7be9cb4be29f4b6250be603e70e3647501c97ddde20a4e71be95fd5e71784e25aca4baf25be5738aae59bbfe1c997781447a2b24")),
}
hash_module = {
256: Hash.SHA256,
512: Hash.SHA512,
}
def print_test_case(remark, pub, kbits, hbits, input, output):
key_hex = pub.hex()
input_hex = input.hex()
output_hex = output.hex()
print(f"""\
PSA verify hash: RSA-{kbits} PSS SHA-{hbits}, {remark}
depends_on:PSA_WANT_ALG_RSA_PSS:PSA_WANT_ALG_SHA_{hbits}:PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY:MBEDTLS_PK_PARSE_C:MBEDTLS_MD_C
verify_hash:PSA_KEY_TYPE_RSA_PUBLIC_KEY:"{key_hex}":PSA_ALG_RSA_PSS(PSA_ALG_SHA_{hbits}):"{input_hex}":"{output_hex}"
PSA verify hash: RSA-{kbits} PSS-any-salt SHA-{hbits}, {remark}
depends_on:PSA_WANT_ALG_RSA_PSS:PSA_WANT_ALG_SHA_{hbits}:PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY:MBEDTLS_PK_PARSE_C:MBEDTLS_MD_C
verify_hash:PSA_KEY_TYPE_RSA_PUBLIC_KEY:"{key_hex}":PSA_ALG_RSA_PSS_ANY_SALT(PSA_ALG_SHA_{hbits}):"{input_hex}":"{output_hex}"
""")
def rand(n):
return bytes(x & 0xff for x in range(n))
def test_case(kbits, hbits, slen):
priv = key[kbits]
pub_spki = priv.publickey().export_key('DER')
pub_raw = PublicKey._expand_subject_public_key_info(pub_spki)[1]
hash_op = hash_module[hbits].new(b'abc')
digest = hash_op.copy().digest()
output = pss.new(priv, salt_bytes=slen, rand_func=rand).sign(hash_op)
print_test_case(f"slen={slen}", pub_raw, kbits, hbits, digest, output)
test_case(1024, 256, 0)
test_case(1024, 256, 31)
test_case(1024, 256, 32)
test_case(1024, 256, 94)
test_case(1024, 512, 61)
test_case(1024, 512, 62)
test_case(528, 512, 0)
```
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Ensure the unique part fits in the 66 columns that the test runner displays.
Leave room for an additional distinguisher on signature key policy negative
test cases.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
The test cases strictly replicate a subset of the test cases for
PSA_ALG_RSA_PSS. The subset validates that PSA_ALG_RSA_PSS_ANY_SALT is
recognized wherever PSA_ALG_RSA_PSS is.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
The requirement of minimum 15 bytes for output buffer in
psa_aead_finish() and psa_aead_verify() does not apply
to the built-in implementation of the GCM.
Alternative implementations are expected to verify the
length of the provided output buffers and to return
the MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL in case the
buffer length is too small.
Signed-off-by: Mateusz Starzyk <mateusz.starzyk@mobica.com>
Only use PSA_ALG_AEAD_WITH_SHORTENED_TAG with the default tag length when
it's part of a series or when the tag length is a critical part of the test.
Don't use it when the tag length is secondary, to make the test data easier
to read.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This is no longer required, as both PolyChaCha and GCM now support
both chunked body data and additional data.
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
Also fiixed the following merge problems:
crypto_struct.h : Added MBEDTLS_PRIVATE to psa_aead_operation_s
members (merge conflict)
psa_crypto_aead.c : Added ciphertext_length to mbedtls_gcm_finish
call (change of API during development)
Signed-off-by: Paul Elliott <paul.elliott@arm.com>