Make `mbedtls_x509_subject_alternative_name` to be a single item
rather than a list. Adapt the subject alternative name parsing function,
to receive a signle `mbedtls_x509_buf` item from the subject_alt_names
sequence of the certificate.
In x509_info_subject_alt_name() we silently dropped names that we
couldn't parse because they are not supported or are malformed. (Being
malformed might mean damaged file, but can be a sign of incompatibility
between applications.)
This commit adds code notifying the user that there is something, but
we can't parse it.
Only allow creating keys in the application (user) range. Allow
opening keys in the implementation (vendor) range as well.
Compared with what the implementation allowed, which was undocumented:
0 is now allowed; values from 0x40000000 to 0xfffeffff are now
forbidden.
Change the scope of key identifiers to be global, rather than
per lifetime. As a result, you now need to specify the lifetime of a
key only when creating it.
Record what key ids have been used in a test case and purge them. The
cleanup code no longer requires the key identifiers used in the tests
to be in a certain small range.
Declare algorithms for ChaCha20 and ChaCha20-Poly1305, and a
corresponding (common) key type.
Don't declare Poly1305 as a separate algorithm because it's a one-time
authenticator, not a MAC, so the API isn't suitable for it (no way to
use a nonce).
Split the test function copy_key into two: one for success and one for
failure.
Add failure tests where the attributes specify an incorrect type or size.
If we provide low order element as a public key and the implementation
maps the point in infinity to the origin, we can force the common secret
to be zero.
According to the standard (RFC 7748) this is allowed but in this case
the primitive must not be used in a protocol that requires contributory
behaviour.
Mbed Crypto returns an error when the result is the point in the
infinity and does not map it to the origin. This is safe even if used in
protocols that require contributory behaviour.
This commit adds test cases that verify that Mbed Crypto returns an
error when low order public keys are processed.
The low order elements in the test cases were taken from this website:
https://cr.yp.to/ecdh.html
The tests we had for ECP point multiplication were tailored for test
vectors symulating crypto operations and tested a series of operations
against public test vectors.
This commit adds a test function that exercises a single multiplication.
This is much better suited for negative testing than the preexisting
test.
Only one new test case is added that exercises a fraction of an existing
test, just to make sure that the test is consistent with the existing
test functions.
Read extra data from the domain parameters in the attribute structure
instead of taking an argument on the function call.
Implement this for RSA key generation, where the public exponent can
be set as a domain parameter.
Add tests that generate RSA keys with various public exponents.
After calling psa_get_key_attributes(), call
psa_reset_key_attributes() if the key may have domain parameters,
because that's the way to free the domain parameter substructure in
the attribute structure. Keep not calling reset() in some places where
the key can only be a symmetric key which doesn't have domain
parameters.
Instead of passing a separate parameter for the key size to
psa_generate_key and psa_generator_import_key, set it through the
attributes, like the key type and other metadata.
This commit adds tests to check the behavior of the record encryption
routine `ssl_encrypt_buf` when the buffer surrounding the plaintext is
too small to hold the expansion in the beginning and end (due to IV's,
padding, and MAC).
Each test starts successively increases the space available at the
beginning, end, or both, of the record buffer, and checks that the
record encryption either fails with a BUFFER_TOO_SMALL error, or
that it succeeds. Moreover, if it succeeds, it is checked that
decryption succeeds, too, and results in the original record.
This commit adds tests exercising mutually inverse pairs of
record encryption and decryption transformations for the various
transformation types allowed in TLS: Stream, CBC, and AEAD.
Update persistent_key_load_key_from_storage to the new attribute-based
key creation interface. I tweaked the code a little to make it simpler
and more robust without changing the core logic.
With the attribute-based key creation API, it is no longer possible to
have a handle to a slot that does not hold key material. Remove all
corresponding tests.
Implement attribute querying.
Test attribute getters and setters. Use psa_get_key_attributes instead
of the deprecated functions psa_get_key_policy or
psa_get_key_information in most tests.
Implement the new, attribute-based psa_import_key and some basic
functions to access psa_key_attributes_t. Replace
psa_import_key_to_handle by psa_import_key in a few test functions.
This commit does not handle persistence attributes yet.
This commit starts a migration to a new interface for key creation.
Today, the application allocates a handle, then fills its metadata,
and finally injects key material. The new interface fills metadata
into a temporary structure, and a handle is allocated at the same time
it gets filled with both metadata and key material.
This commit was obtained by moving the declaration of the old-style
functions to crypto_extra.h and renaming them with the to_handle
suffix, adding declarations for the new-style functions in crypto.h
under their new name, and running
perl -i -pe 's/\bpsa_(import|copy|generator_import|generate)_key\b/$&_to_handle/g' library/*.c tests/suites/*.function programs/psa/*.c
perl -i -pe 's/\bpsa_get_key_lifetime\b/$&_from_handle/g' library/*.c tests/suites/*.function programs/psa/*.c
Many functions that are specific to the old interface, and which will
not remain under the same name with the new interface, are still in
crypto.h for now.
All functional tests should still pass. The documentation may have
some broken links.