mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-03-24 01:43:33 +00:00
Move tests of random-in-range functions to their own suite
The random-in-nrange test code has auxiliary functions that are common to all the interfaces (core, mod_raw (upcoming), mod (upcoming), legacy), and does some differential testing to check that all the layers consume the RNG in the saame way. Test them all in the same test suite. Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
parent
da9746e8ce
commit
de09ddd64e
@ -90,50 +90,6 @@ static int f_rng_bytes_left( void *state, unsigned char *buf, size_t len )
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/* Test whether bytes represents (in big-endian base 256) a number b that
|
||||
* is significantly above a power of 2. That is, b must not have a long run
|
||||
* of unset bits after the most significant bit.
|
||||
*
|
||||
* Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}.
|
||||
* This function returns 1 if, when drawing a number between 0 and b,
|
||||
* the probability that this number is at least 2^n is not negligible.
|
||||
* This probability is (b - 2^n) / b and this function checks that this
|
||||
* number is above some threshold A. The threshold value is heuristic and
|
||||
* based on the needs of mpi_random_many().
|
||||
*/
|
||||
static int is_significantly_above_a_power_of_2( data_t *bytes )
|
||||
{
|
||||
const uint8_t *p = bytes->x;
|
||||
size_t len = bytes->len;
|
||||
unsigned x;
|
||||
|
||||
/* Skip leading null bytes */
|
||||
while( len > 0 && p[0] == 0 )
|
||||
{
|
||||
++p;
|
||||
--len;
|
||||
}
|
||||
/* 0 is not significantly above a power of 2 */
|
||||
if( len == 0 )
|
||||
return( 0 );
|
||||
/* Extract the (up to) 2 most significant bytes */
|
||||
if( len == 1 )
|
||||
x = p[0];
|
||||
else
|
||||
x = ( p[0] << 8 ) | p[1];
|
||||
|
||||
/* Shift the most significant bit of x to position 8 and mask it out */
|
||||
while( ( x & 0xfe00 ) != 0 )
|
||||
x >>= 1;
|
||||
x &= 0x00ff;
|
||||
|
||||
/* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above
|
||||
* a power of 2 iff x is significantly above 0 compared to 2^8.
|
||||
* Testing x >= 2^4 amounts to picking A = 1/16 in the function
|
||||
* description above. */
|
||||
return( x >= 0x10 );
|
||||
}
|
||||
|
||||
/* END_HEADER */
|
||||
|
||||
/* BEGIN_DEPENDENCIES
|
||||
@ -1295,269 +1251,6 @@ exit:
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_core_random_basic( int min, char *bound_bytes, int expected_ret )
|
||||
{
|
||||
/* Same RNG as in mpi_random_values */
|
||||
mbedtls_test_rnd_pseudo_info rnd = {
|
||||
{'T', 'h', 'i', 's', ' ', 'i', ',', 'a',
|
||||
's', 'e', 'e', 'd', '!', 0},
|
||||
0, 0};
|
||||
size_t limbs;
|
||||
mbedtls_mpi_uint *lower_bound = NULL;
|
||||
mbedtls_mpi_uint *upper_bound = NULL;
|
||||
mbedtls_mpi_uint *result = NULL;
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
|
||||
bound_bytes ) );
|
||||
ASSERT_ALLOC( lower_bound, limbs * ciL );
|
||||
lower_bound[0] = min;
|
||||
ASSERT_ALLOC( result, limbs * ciL );
|
||||
|
||||
TEST_EQUAL( expected_ret,
|
||||
mbedtls_mpi_core_random( result, min, upper_bound, limbs,
|
||||
mbedtls_test_rnd_pseudo_rand, &rnd ) );
|
||||
|
||||
if( expected_ret == 0 )
|
||||
{
|
||||
TEST_EQUAL( 0, mbedtls_mpi_core_lt_ct( result, lower_bound, limbs ) );
|
||||
TEST_EQUAL( 1, mbedtls_mpi_core_lt_ct( result, upper_bound, limbs ) );
|
||||
}
|
||||
|
||||
exit:
|
||||
mbedtls_free( lower_bound );
|
||||
mbedtls_free( upper_bound );
|
||||
mbedtls_free( result );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_values( int min, char *max_hex )
|
||||
{
|
||||
/* Same RNG as in mpi_core_random_basic */
|
||||
mbedtls_test_rnd_pseudo_info rnd_core = {
|
||||
{'T', 'h', 'i', 's', ' ', 'i', ',', 'a',
|
||||
's', 'e', 'e', 'd', '!', 0},
|
||||
0, 0};
|
||||
mbedtls_test_rnd_pseudo_info rnd_legacy;
|
||||
memcpy( &rnd_legacy, &rnd_core, sizeof( rnd_core ) );
|
||||
mbedtls_mpi max_legacy;
|
||||
mbedtls_mpi_init( &max_legacy );
|
||||
mbedtls_mpi_uint *R_core = NULL;
|
||||
mbedtls_mpi R_legacy;
|
||||
mbedtls_mpi_init( &R_legacy );
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi( &max_legacy, max_hex ) );
|
||||
size_t limbs = max_legacy.n;
|
||||
ASSERT_ALLOC( R_core, limbs * ciL );
|
||||
|
||||
/* Call the legacy function and the core function with the same random
|
||||
* stream. */
|
||||
int core_ret = mbedtls_mpi_core_random( R_core, min, max_legacy.p, limbs,
|
||||
mbedtls_test_rnd_pseudo_rand,
|
||||
&rnd_core );
|
||||
int legacy_ret = mbedtls_mpi_random( &R_legacy, min, &max_legacy,
|
||||
mbedtls_test_rnd_pseudo_rand,
|
||||
&rnd_legacy );
|
||||
|
||||
/* They must return the same status, and, on success, output the
|
||||
* same number, with the same limb count. */
|
||||
TEST_EQUAL( core_ret, legacy_ret );
|
||||
if( core_ret == 0 )
|
||||
{
|
||||
ASSERT_COMPARE( R_core, limbs * ciL,
|
||||
R_legacy.p, R_legacy.n * ciL );
|
||||
}
|
||||
|
||||
/* Also check that they have consumed the RNG in the same way. */
|
||||
/* This may theoretically fail on rare platforms with padding in
|
||||
* the structure! If this is a problem in practice, change to a
|
||||
* field-by-field comparison. */
|
||||
ASSERT_COMPARE( &rnd_core, sizeof( rnd_core ),
|
||||
&rnd_legacy, sizeof( rnd_legacy ) );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &max_legacy );
|
||||
mbedtls_free( R_core );
|
||||
mbedtls_mpi_free( &R_legacy );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_many( int min, char *bound_hex, int iterations )
|
||||
{
|
||||
/* Generate numbers in the range 1..bound-1. Do it iterations times.
|
||||
* This function assumes that the value of bound is at least 2 and
|
||||
* that iterations is large enough that a one-in-2^iterations chance
|
||||
* effectively never occurs.
|
||||
*/
|
||||
|
||||
data_t bound_bytes = {NULL, 0};
|
||||
mbedtls_mpi_uint *upper_bound = NULL;
|
||||
size_t limbs;
|
||||
size_t n_bits;
|
||||
mbedtls_mpi_uint *result = NULL;
|
||||
size_t b;
|
||||
/* If upper_bound is small, stats[b] is the number of times the value b
|
||||
* has been generated. Otherwise stats[b] is the number of times a
|
||||
* value with bit b set has been generated. */
|
||||
size_t *stats = NULL;
|
||||
size_t stats_len;
|
||||
int full_stats;
|
||||
size_t i;
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
|
||||
bound_hex ) );
|
||||
ASSERT_ALLOC( result, limbs * ciL );
|
||||
|
||||
n_bits = mbedtls_mpi_core_bitlen( upper_bound, limbs );
|
||||
/* Consider a bound "small" if it's less than 2^5. This value is chosen
|
||||
* to be small enough that the probability of missing one value is
|
||||
* negligible given the number of iterations. It must be less than
|
||||
* 256 because some of the code below assumes that "small" values
|
||||
* fit in a byte. */
|
||||
if( n_bits <= 5 )
|
||||
{
|
||||
full_stats = 1;
|
||||
stats_len = (uint8_t) upper_bound[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
full_stats = 0;
|
||||
stats_len = n_bits;
|
||||
}
|
||||
ASSERT_ALLOC( stats, stats_len );
|
||||
|
||||
for( i = 0; i < (size_t) iterations; i++ )
|
||||
{
|
||||
mbedtls_test_set_step( i );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_core_random( result,
|
||||
min, upper_bound, limbs,
|
||||
mbedtls_test_rnd_std_rand, NULL ) );
|
||||
|
||||
/* Temporarily use a legacy MPI for analysis, because the
|
||||
* necessary auxiliary functions don't exist yet in core. */
|
||||
mbedtls_mpi B = {1, limbs, upper_bound};
|
||||
mbedtls_mpi R = {1, limbs, result};
|
||||
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &R, min ) >= 0 );
|
||||
if( full_stats )
|
||||
{
|
||||
uint8_t value;
|
||||
TEST_EQUAL( 0, mbedtls_mpi_write_binary( &R, &value, 1 ) );
|
||||
TEST_ASSERT( value < stats_len );
|
||||
++stats[value];
|
||||
}
|
||||
else
|
||||
{
|
||||
for( b = 0; b < n_bits; b++ )
|
||||
stats[b] += mbedtls_mpi_get_bit( &R, b );
|
||||
}
|
||||
}
|
||||
|
||||
if( full_stats )
|
||||
{
|
||||
for( b = min; b < stats_len; b++ )
|
||||
{
|
||||
mbedtls_test_set_step( 1000000 + b );
|
||||
/* Assert that each value has been reached at least once.
|
||||
* This is almost guaranteed if the iteration count is large
|
||||
* enough. This is a very crude way of checking the distribution.
|
||||
*/
|
||||
TEST_ASSERT( stats[b] > 0 );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
bound_bytes.len = limbs * sizeof( mbedtls_mpi_uint );
|
||||
ASSERT_ALLOC( bound_bytes.x, bound_bytes.len );
|
||||
mbedtls_mpi_core_write_be( upper_bound, limbs,
|
||||
bound_bytes.x, bound_bytes.len );
|
||||
int statistically_safe_all_the_way =
|
||||
is_significantly_above_a_power_of_2( &bound_bytes );
|
||||
for( b = 0; b < n_bits; b++ )
|
||||
{
|
||||
mbedtls_test_set_step( 1000000 + b );
|
||||
/* Assert that each bit has been set in at least one result and
|
||||
* clear in at least one result. Provided that iterations is not
|
||||
* too small, it would be extremely unlikely for this not to be
|
||||
* the case if the results are uniformly distributed.
|
||||
*
|
||||
* As an exception, the top bit may legitimately never be set
|
||||
* if bound is a power of 2 or only slightly above.
|
||||
*/
|
||||
if( statistically_safe_all_the_way || b != n_bits - 1 )
|
||||
{
|
||||
TEST_ASSERT( stats[b] > 0 );
|
||||
}
|
||||
TEST_ASSERT( stats[b] < (size_t) iterations );
|
||||
}
|
||||
}
|
||||
|
||||
exit:
|
||||
mbedtls_free( bound_bytes.x );
|
||||
mbedtls_free( upper_bound );
|
||||
mbedtls_free( result );
|
||||
mbedtls_free( stats );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before )
|
||||
{
|
||||
mbedtls_mpi upper_bound;
|
||||
mbedtls_mpi result;
|
||||
|
||||
mbedtls_mpi_init( &upper_bound );
|
||||
mbedtls_mpi_init( &result );
|
||||
|
||||
if( before != 0 )
|
||||
{
|
||||
/* Set result to sign(before) * 2^(|before|-1) */
|
||||
TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 );
|
||||
if( before < 0 )
|
||||
before = - before;
|
||||
TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 );
|
||||
}
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
|
||||
bound_bytes->x, bound_bytes->len ) );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
|
||||
mbedtls_test_rnd_std_rand, NULL ) );
|
||||
TEST_ASSERT( sign_is_valid( &result ) );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &upper_bound );
|
||||
mbedtls_mpi_free( &result );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret )
|
||||
{
|
||||
mbedtls_mpi upper_bound;
|
||||
mbedtls_mpi result;
|
||||
int actual_ret;
|
||||
|
||||
mbedtls_mpi_init( &upper_bound );
|
||||
mbedtls_mpi_init( &result );
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
|
||||
bound_bytes->x, bound_bytes->len ) );
|
||||
actual_ret = mbedtls_mpi_random( &result, min, &upper_bound,
|
||||
mbedtls_test_rnd_std_rand, NULL );
|
||||
TEST_EQUAL( expected_ret, actual_ret );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &upper_bound );
|
||||
mbedtls_mpi_free( &result );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void most_negative_mpi_sint( )
|
||||
{
|
||||
|
@ -1788,256 +1788,6 @@ mpi_fill_random:16:15:0:MBEDTLS_ERR_ENTROPY_SOURCE_FAILED
|
||||
Fill random: MAX_SIZE bytes, RNG failure after MAX_SIZE-1 bytes
|
||||
mpi_fill_random:MBEDTLS_MPI_MAX_SIZE:MBEDTLS_MPI_MAX_SIZE-1:0:MBEDTLS_ERR_ENTROPY_SOURCE_FAILED
|
||||
|
||||
MPI core random basic: 0..1
|
||||
mpi_core_random_basic:0:"01":0
|
||||
|
||||
MPI core random basic: 0..2
|
||||
mpi_core_random_basic:0:"02":0
|
||||
|
||||
MPI core random basic: 1..2
|
||||
mpi_core_random_basic:1:"02":0
|
||||
|
||||
MPI core random basic: 2^30..2^31
|
||||
mpi_core_random_basic:0x40000000:"80000000":0
|
||||
|
||||
MPI core random basic: 0..2^128
|
||||
mpi_core_random_basic:0x40000000:"0100000000000000000000000000000000":0
|
||||
|
||||
MPI core random basic: 2^30..2^129
|
||||
mpi_core_random_basic:0x40000000:"0200000000000000000000000000000000":0
|
||||
|
||||
# Use the same data values for mpi_core_random_basic->NOT_ACCEPTABLE
|
||||
# and for mpi_random_values where we want to return NOT_ACCEPTABLE but
|
||||
# this isn't checked at runtime.
|
||||
MPI core random basic: 2^28-1..2^28 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x0fffffff:"10000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^28-1..2^28 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x0fffffff:"10000000"
|
||||
|
||||
MPI core random basic: 2^29-1..2^29 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x1fffffff:"20000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^29-1..2^29 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x1fffffff:"20000000"
|
||||
|
||||
MPI core random basic: 2^30-1..2^30 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x3fffffff:"40000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^30-1..2^30 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x3fffffff:"40000000"
|
||||
|
||||
MPI core random basic: 2^31-1..2^31 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x7fffffff:"80000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^31 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x7fffffff:"80000000"
|
||||
|
||||
MPI random in range: 1..2
|
||||
mpi_random_many:1:"02":1000
|
||||
|
||||
MPI random in range: 1..3
|
||||
mpi_random_many:1:"03":1000
|
||||
|
||||
MPI random in range: 1..4
|
||||
mpi_random_many:1:"04":1000
|
||||
|
||||
MPI random in range: 1..5
|
||||
mpi_random_many:1:"05":1000
|
||||
|
||||
MPI random in range: 1..6
|
||||
mpi_random_many:1:"06":1000
|
||||
|
||||
MPI random in range: 1..7
|
||||
mpi_random_many:1:"07":1000
|
||||
|
||||
MPI random in range: 1..8
|
||||
mpi_random_many:1:"08":1000
|
||||
|
||||
MPI random in range: 1..9
|
||||
mpi_random_many:1:"09":1000
|
||||
|
||||
MPI random in range: 1..10
|
||||
mpi_random_many:1:"0a":1000
|
||||
|
||||
MPI random in range: 1..11
|
||||
mpi_random_many:1:"0b":1000
|
||||
|
||||
MPI random in range: 1..12
|
||||
mpi_random_many:1:"0c":1000
|
||||
|
||||
MPI random in range: 1..255
|
||||
mpi_random_many:1:"ff":200
|
||||
|
||||
MPI random in range: 1..256
|
||||
mpi_random_many:1:"0100":200
|
||||
|
||||
MPI random in range: 1..257
|
||||
mpi_random_many:1:"0101":200
|
||||
|
||||
MPI random in range: 1..272
|
||||
mpi_random_many:1:"0110":200
|
||||
|
||||
MPI random in range: 1..2^64-1
|
||||
mpi_random_many:1:"ffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^64
|
||||
mpi_random_many:1:"010000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^64+1
|
||||
mpi_random_many:1:"010000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^64+2^63
|
||||
mpi_random_many:1:"018000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^65-1
|
||||
mpi_random_many:1:"01ffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^65
|
||||
mpi_random_many:1:"020000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^65+1
|
||||
mpi_random_many:1:"020000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^65+2^64
|
||||
mpi_random_many:1:"030000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^66+2^65
|
||||
mpi_random_many:1:"060000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^71-1
|
||||
mpi_random_many:1:"7fffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^71
|
||||
mpi_random_many:1:"800000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^71+1
|
||||
mpi_random_many:1:"800000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^71+2^70
|
||||
mpi_random_many:1:"c00000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^72-1
|
||||
mpi_random_many:1:"ffffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^72
|
||||
mpi_random_many:1:"01000000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^72+1
|
||||
mpi_random_many:1:"01000000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^72+2^71
|
||||
mpi_random_many:1:"01800000000000000000":100
|
||||
|
||||
MPI random in range: 0..1
|
||||
mpi_random_many:0:"04":10000
|
||||
|
||||
MPI random in range: 0..4
|
||||
mpi_random_many:0:"04":10000
|
||||
|
||||
MPI random in range: 2..4
|
||||
mpi_random_many:2:"04":10000
|
||||
|
||||
MPI random in range: 3..4
|
||||
mpi_random_many:3:"04":10000
|
||||
|
||||
MPI random in range: smaller result
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbb":1:0
|
||||
|
||||
MPI random in range: same size result (32-bit limbs)
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":2:0
|
||||
|
||||
MPI random in range: same size result (64-bit limbs)
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":1:0
|
||||
|
||||
MPI random in range: larger result
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":3:0
|
||||
|
||||
## The "0 limb in upper bound" tests rely on the fact that
|
||||
## mbedtls_mpi_read_binary() bases the size of the MPI on the size of
|
||||
## the input, without first checking for leading zeros. If this was
|
||||
## not the case, the tests would still pass, but would not exercise
|
||||
## the advertised behavior.
|
||||
MPI random in range: leading 0 limb in upper bound #0
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":0:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #1
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":1:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #2
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":2:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #3
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":3:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #4
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":4:0
|
||||
|
||||
MPI random in range: previously small >0
|
||||
mpi_random_sizes:1:"1234567890":4:1
|
||||
|
||||
MPI random in range: previously small <0
|
||||
mpi_random_sizes:1:"1234567890":4:-1
|
||||
|
||||
MPI random in range: previously large >0
|
||||
mpi_random_sizes:1:"1234":4:65
|
||||
|
||||
MPI random in range: previously large <0
|
||||
mpi_random_sizes:1:"1234":4:-65
|
||||
|
||||
MPI random bad arguments: min < 0
|
||||
mpi_random_fail:-1:"04":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min = N = 0
|
||||
mpi_random_fail:0:"00":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min = N = 1
|
||||
mpi_random_fail:1:"01":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 0
|
||||
mpi_random_fail:1:"00":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 1
|
||||
mpi_random_fail:2:"01":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 1, 0 limb in upper bound
|
||||
mpi_random_fail:2:"000000000000000001":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random legacy=core: 0..1
|
||||
mpi_random_values:0:"01"
|
||||
|
||||
MPI random legacy=core: 0..2
|
||||
mpi_random_values:0:"02"
|
||||
|
||||
MPI random legacy=core: 1..2
|
||||
mpi_random_values:1:"02"
|
||||
|
||||
MPI random legacy=core: 2^30..2^31
|
||||
mpi_random_values:0x40000000:"80000000"
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^32-1
|
||||
mpi_random_values:0x7fffffff:"ffffffff"
|
||||
|
||||
MPI random legacy=core: 0..2^256
|
||||
mpi_random_values:0:"010000000000000000000000000000000000000000000000000000000000000000"
|
||||
|
||||
MPI random legacy=core: 0..2^256+1
|
||||
mpi_random_values:0:"010000000000000000000000000000000000000000000000000000000000000001"
|
||||
|
||||
# The following test cases return MPI_NOT_ACCEPTABLE
|
||||
# (verified at the time of writing, not enforced at runtime)
|
||||
MPI random legacy=core: 2^28-1..2^28 (improbable)
|
||||
mpi_random_values:0x0fffffff:"10000000"
|
||||
|
||||
MPI random legacy=core: 2^29-1..2^29 (improbable)
|
||||
mpi_random_values:0x1fffffff:"20000000"
|
||||
|
||||
MPI random legacy=core: 2^30-1..2^30 (improbable)
|
||||
mpi_random_values:0x3fffffff:"40000000"
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^31 (improbable)
|
||||
mpi_random_values:0x7fffffff:"80000000"
|
||||
|
||||
Most negative mbedtls_mpi_sint
|
||||
most_negative_mpi_sint:
|
||||
|
||||
|
249
tests/suites/test_suite_bignum_random.data
Normal file
249
tests/suites/test_suite_bignum_random.data
Normal file
@ -0,0 +1,249 @@
|
||||
MPI core random basic: 0..1
|
||||
mpi_core_random_basic:0:"01":0
|
||||
|
||||
MPI core random basic: 0..2
|
||||
mpi_core_random_basic:0:"02":0
|
||||
|
||||
MPI core random basic: 1..2
|
||||
mpi_core_random_basic:1:"02":0
|
||||
|
||||
MPI core random basic: 2^30..2^31
|
||||
mpi_core_random_basic:0x40000000:"80000000":0
|
||||
|
||||
MPI core random basic: 0..2^128
|
||||
mpi_core_random_basic:0x40000000:"0100000000000000000000000000000000":0
|
||||
|
||||
MPI core random basic: 2^30..2^129
|
||||
mpi_core_random_basic:0x40000000:"0200000000000000000000000000000000":0
|
||||
|
||||
# Use the same data values for mpi_core_random_basic->NOT_ACCEPTABLE
|
||||
# and for mpi_random_values where we want to return NOT_ACCEPTABLE but
|
||||
# this isn't checked at runtime.
|
||||
MPI core random basic: 2^28-1..2^28 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x0fffffff:"10000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^28-1..2^28 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x0fffffff:"10000000"
|
||||
|
||||
MPI core random basic: 2^29-1..2^29 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x1fffffff:"20000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^29-1..2^29 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x1fffffff:"20000000"
|
||||
|
||||
MPI core random basic: 2^30-1..2^30 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x3fffffff:"40000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^30-1..2^30 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x3fffffff:"40000000"
|
||||
|
||||
MPI core random basic: 2^31-1..2^31 (NOT_ACCEPTABLE)
|
||||
mpi_core_random_basic:0x7fffffff:"80000000":MBEDTLS_ERR_MPI_NOT_ACCEPTABLE
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^31 (NOT_ACCEPTABLE)
|
||||
mpi_random_values:0x7fffffff:"80000000"
|
||||
|
||||
MPI random in range: 1..2
|
||||
mpi_random_many:1:"02":1000
|
||||
|
||||
MPI random in range: 1..3
|
||||
mpi_random_many:1:"03":1000
|
||||
|
||||
MPI random in range: 1..4
|
||||
mpi_random_many:1:"04":1000
|
||||
|
||||
MPI random in range: 1..5
|
||||
mpi_random_many:1:"05":1000
|
||||
|
||||
MPI random in range: 1..6
|
||||
mpi_random_many:1:"06":1000
|
||||
|
||||
MPI random in range: 1..7
|
||||
mpi_random_many:1:"07":1000
|
||||
|
||||
MPI random in range: 1..8
|
||||
mpi_random_many:1:"08":1000
|
||||
|
||||
MPI random in range: 1..9
|
||||
mpi_random_many:1:"09":1000
|
||||
|
||||
MPI random in range: 1..10
|
||||
mpi_random_many:1:"0a":1000
|
||||
|
||||
MPI random in range: 1..11
|
||||
mpi_random_many:1:"0b":1000
|
||||
|
||||
MPI random in range: 1..12
|
||||
mpi_random_many:1:"0c":1000
|
||||
|
||||
MPI random in range: 1..255
|
||||
mpi_random_many:1:"ff":200
|
||||
|
||||
MPI random in range: 1..256
|
||||
mpi_random_many:1:"0100":200
|
||||
|
||||
MPI random in range: 1..257
|
||||
mpi_random_many:1:"0101":200
|
||||
|
||||
MPI random in range: 1..272
|
||||
mpi_random_many:1:"0110":200
|
||||
|
||||
MPI random in range: 1..2^64-1
|
||||
mpi_random_many:1:"ffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^64
|
||||
mpi_random_many:1:"010000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^64+1
|
||||
mpi_random_many:1:"010000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^64+2^63
|
||||
mpi_random_many:1:"018000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^65-1
|
||||
mpi_random_many:1:"01ffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^65
|
||||
mpi_random_many:1:"020000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^65+1
|
||||
mpi_random_many:1:"020000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^65+2^64
|
||||
mpi_random_many:1:"030000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^66+2^65
|
||||
mpi_random_many:1:"060000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^71-1
|
||||
mpi_random_many:1:"7fffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^71
|
||||
mpi_random_many:1:"800000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^71+1
|
||||
mpi_random_many:1:"800000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^71+2^70
|
||||
mpi_random_many:1:"c00000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^72-1
|
||||
mpi_random_many:1:"ffffffffffffffffff":100
|
||||
|
||||
MPI random in range: 1..2^72
|
||||
mpi_random_many:1:"01000000000000000000":100
|
||||
|
||||
MPI random in range: 1..2^72+1
|
||||
mpi_random_many:1:"01000000000000000001":100
|
||||
|
||||
MPI random in range: 1..2^72+2^71
|
||||
mpi_random_many:1:"01800000000000000000":100
|
||||
|
||||
MPI random in range: 0..1
|
||||
mpi_random_many:0:"04":10000
|
||||
|
||||
MPI random in range: 0..4
|
||||
mpi_random_many:0:"04":10000
|
||||
|
||||
MPI random in range: 2..4
|
||||
mpi_random_many:2:"04":10000
|
||||
|
||||
MPI random in range: 3..4
|
||||
mpi_random_many:3:"04":10000
|
||||
|
||||
MPI random in range: smaller result
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbb":1:0
|
||||
|
||||
MPI random in range: same size result (32-bit limbs)
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":2:0
|
||||
|
||||
MPI random in range: same size result (64-bit limbs)
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":1:0
|
||||
|
||||
MPI random in range: larger result
|
||||
mpi_random_sizes:1:"aaaaaaaaaaaaaaaa":3:0
|
||||
|
||||
## The "0 limb in upper bound" tests rely on the fact that
|
||||
## mbedtls_mpi_read_binary() bases the size of the MPI on the size of
|
||||
## the input, without first checking for leading zeros. If this was
|
||||
## not the case, the tests would still pass, but would not exercise
|
||||
## the advertised behavior.
|
||||
MPI random in range: leading 0 limb in upper bound #0
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":0:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #1
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":1:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #2
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":2:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #3
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":3:0
|
||||
|
||||
MPI random in range: leading 0 limb in upper bound #4
|
||||
mpi_random_sizes:1:"00aaaaaaaaaaaaaaaa":4:0
|
||||
|
||||
MPI random in range: previously small >0
|
||||
mpi_random_sizes:1:"1234567890":4:1
|
||||
|
||||
MPI random in range: previously small <0
|
||||
mpi_random_sizes:1:"1234567890":4:-1
|
||||
|
||||
MPI random in range: previously large >0
|
||||
mpi_random_sizes:1:"1234":4:65
|
||||
|
||||
MPI random in range: previously large <0
|
||||
mpi_random_sizes:1:"1234":4:-65
|
||||
|
||||
MPI random bad arguments: min < 0
|
||||
mpi_random_fail:-1:"04":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min = N = 0
|
||||
mpi_random_fail:0:"00":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min = N = 1
|
||||
mpi_random_fail:1:"01":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 0
|
||||
mpi_random_fail:1:"00":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 1
|
||||
mpi_random_fail:2:"01":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random bad arguments: min > N = 1, 0 limb in upper bound
|
||||
mpi_random_fail:2:"000000000000000001":MBEDTLS_ERR_MPI_BAD_INPUT_DATA
|
||||
|
||||
MPI random legacy=core: 0..1
|
||||
mpi_random_values:0:"01"
|
||||
|
||||
MPI random legacy=core: 0..2
|
||||
mpi_random_values:0:"02"
|
||||
|
||||
MPI random legacy=core: 1..2
|
||||
mpi_random_values:1:"02"
|
||||
|
||||
MPI random legacy=core: 2^30..2^31
|
||||
mpi_random_values:0x40000000:"80000000"
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^32-1
|
||||
mpi_random_values:0x7fffffff:"ffffffff"
|
||||
|
||||
MPI random legacy=core: 0..2^256
|
||||
mpi_random_values:0:"010000000000000000000000000000000000000000000000000000000000000000"
|
||||
|
||||
MPI random legacy=core: 0..2^256+1
|
||||
mpi_random_values:0:"010000000000000000000000000000000000000000000000000000000000000001"
|
||||
|
||||
# The following test cases return MPI_NOT_ACCEPTABLE
|
||||
# (verified at the time of writing, not enforced at runtime)
|
||||
MPI random legacy=core: 2^28-1..2^28 (improbable)
|
||||
mpi_random_values:0x0fffffff:"10000000"
|
||||
|
||||
MPI random legacy=core: 2^29-1..2^29 (improbable)
|
||||
mpi_random_values:0x1fffffff:"20000000"
|
||||
|
||||
MPI random legacy=core: 2^30-1..2^30 (improbable)
|
||||
mpi_random_values:0x3fffffff:"40000000"
|
||||
|
||||
MPI random legacy=core: 2^31-1..2^31 (improbable)
|
||||
mpi_random_values:0x7fffffff:"80000000"
|
331
tests/suites/test_suite_bignum_random.function
Normal file
331
tests/suites/test_suite_bignum_random.function
Normal file
@ -0,0 +1,331 @@
|
||||
/* BEGIN_HEADER */
|
||||
/* Dedicated test suite for mbedtls_mpi_core_random() and the upper-layer
|
||||
* functions. Due to the complexity of how these functions are tested,
|
||||
* we test all the layers in a single test suite, unlike the way other
|
||||
* functions are tested with each layer in its own test suite.
|
||||
*/
|
||||
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "mbedtls/entropy.h"
|
||||
#include "bignum_core.h"
|
||||
#include "constant_time_internal.h"
|
||||
|
||||
/* This test suite only manipulates non-negative bignums. */
|
||||
static int sign_is_valid( const mbedtls_mpi *X )
|
||||
{
|
||||
return( X->s == 1 );
|
||||
}
|
||||
|
||||
/* Test whether bytes represents (in big-endian base 256) a number b that
|
||||
* is significantly above a power of 2. That is, b must not have a long run
|
||||
* of unset bits after the most significant bit.
|
||||
*
|
||||
* Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}.
|
||||
* This function returns 1 if, when drawing a number between 0 and b,
|
||||
* the probability that this number is at least 2^n is not negligible.
|
||||
* This probability is (b - 2^n) / b and this function checks that this
|
||||
* number is above some threshold A. The threshold value is heuristic and
|
||||
* based on the needs of mpi_random_many().
|
||||
*/
|
||||
static int is_significantly_above_a_power_of_2( data_t *bytes )
|
||||
{
|
||||
const uint8_t *p = bytes->x;
|
||||
size_t len = bytes->len;
|
||||
unsigned x;
|
||||
|
||||
/* Skip leading null bytes */
|
||||
while( len > 0 && p[0] == 0 )
|
||||
{
|
||||
++p;
|
||||
--len;
|
||||
}
|
||||
/* 0 is not significantly above a power of 2 */
|
||||
if( len == 0 )
|
||||
return( 0 );
|
||||
/* Extract the (up to) 2 most significant bytes */
|
||||
if( len == 1 )
|
||||
x = p[0];
|
||||
else
|
||||
x = ( p[0] << 8 ) | p[1];
|
||||
|
||||
/* Shift the most significant bit of x to position 8 and mask it out */
|
||||
while( ( x & 0xfe00 ) != 0 )
|
||||
x >>= 1;
|
||||
x &= 0x00ff;
|
||||
|
||||
/* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above
|
||||
* a power of 2 iff x is significantly above 0 compared to 2^8.
|
||||
* Testing x >= 2^4 amounts to picking A = 1/16 in the function
|
||||
* description above. */
|
||||
return( x >= 0x10 );
|
||||
}
|
||||
|
||||
/* END_HEADER */
|
||||
|
||||
/* BEGIN_DEPENDENCIES
|
||||
* depends_on:MBEDTLS_BIGNUM_C
|
||||
* END_DEPENDENCIES
|
||||
*/
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_core_random_basic( int min, char *bound_bytes, int expected_ret )
|
||||
{
|
||||
/* Same RNG as in mpi_random_values */
|
||||
mbedtls_test_rnd_pseudo_info rnd = {
|
||||
{'T', 'h', 'i', 's', ' ', 'i', ',', 'a',
|
||||
's', 'e', 'e', 'd', '!', 0},
|
||||
0, 0};
|
||||
size_t limbs;
|
||||
mbedtls_mpi_uint *lower_bound = NULL;
|
||||
mbedtls_mpi_uint *upper_bound = NULL;
|
||||
mbedtls_mpi_uint *result = NULL;
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
|
||||
bound_bytes ) );
|
||||
ASSERT_ALLOC( lower_bound, limbs * ciL );
|
||||
lower_bound[0] = min;
|
||||
ASSERT_ALLOC( result, limbs * ciL );
|
||||
|
||||
TEST_EQUAL( expected_ret,
|
||||
mbedtls_mpi_core_random( result, min, upper_bound, limbs,
|
||||
mbedtls_test_rnd_pseudo_rand, &rnd ) );
|
||||
|
||||
if( expected_ret == 0 )
|
||||
{
|
||||
TEST_EQUAL( 0, mbedtls_mpi_core_lt_ct( result, lower_bound, limbs ) );
|
||||
TEST_EQUAL( 1, mbedtls_mpi_core_lt_ct( result, upper_bound, limbs ) );
|
||||
}
|
||||
|
||||
exit:
|
||||
mbedtls_free( lower_bound );
|
||||
mbedtls_free( upper_bound );
|
||||
mbedtls_free( result );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_values( int min, char *max_hex )
|
||||
{
|
||||
/* Same RNG as in mpi_core_random_basic */
|
||||
mbedtls_test_rnd_pseudo_info rnd_core = {
|
||||
{'T', 'h', 'i', 's', ' ', 'i', ',', 'a',
|
||||
's', 'e', 'e', 'd', '!', 0},
|
||||
0, 0};
|
||||
mbedtls_test_rnd_pseudo_info rnd_legacy;
|
||||
memcpy( &rnd_legacy, &rnd_core, sizeof( rnd_core ) );
|
||||
mbedtls_mpi max_legacy;
|
||||
mbedtls_mpi_init( &max_legacy );
|
||||
mbedtls_mpi_uint *R_core = NULL;
|
||||
mbedtls_mpi R_legacy;
|
||||
mbedtls_mpi_init( &R_legacy );
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi( &max_legacy, max_hex ) );
|
||||
size_t limbs = max_legacy.n;
|
||||
ASSERT_ALLOC( R_core, limbs * ciL );
|
||||
|
||||
/* Call the legacy function and the core function with the same random
|
||||
* stream. */
|
||||
int core_ret = mbedtls_mpi_core_random( R_core, min, max_legacy.p, limbs,
|
||||
mbedtls_test_rnd_pseudo_rand,
|
||||
&rnd_core );
|
||||
int legacy_ret = mbedtls_mpi_random( &R_legacy, min, &max_legacy,
|
||||
mbedtls_test_rnd_pseudo_rand,
|
||||
&rnd_legacy );
|
||||
|
||||
/* They must return the same status, and, on success, output the
|
||||
* same number, with the same limb count. */
|
||||
TEST_EQUAL( core_ret, legacy_ret );
|
||||
if( core_ret == 0 )
|
||||
{
|
||||
ASSERT_COMPARE( R_core, limbs * ciL,
|
||||
R_legacy.p, R_legacy.n * ciL );
|
||||
}
|
||||
|
||||
/* Also check that they have consumed the RNG in the same way. */
|
||||
/* This may theoretically fail on rare platforms with padding in
|
||||
* the structure! If this is a problem in practice, change to a
|
||||
* field-by-field comparison. */
|
||||
ASSERT_COMPARE( &rnd_core, sizeof( rnd_core ),
|
||||
&rnd_legacy, sizeof( rnd_legacy ) );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &max_legacy );
|
||||
mbedtls_free( R_core );
|
||||
mbedtls_mpi_free( &R_legacy );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_many( int min, char *bound_hex, int iterations )
|
||||
{
|
||||
/* Generate numbers in the range 1..bound-1. Do it iterations times.
|
||||
* This function assumes that the value of bound is at least 2 and
|
||||
* that iterations is large enough that a one-in-2^iterations chance
|
||||
* effectively never occurs.
|
||||
*/
|
||||
|
||||
data_t bound_bytes = {NULL, 0};
|
||||
mbedtls_mpi_uint *upper_bound = NULL;
|
||||
size_t limbs;
|
||||
size_t n_bits;
|
||||
mbedtls_mpi_uint *result = NULL;
|
||||
size_t b;
|
||||
/* If upper_bound is small, stats[b] is the number of times the value b
|
||||
* has been generated. Otherwise stats[b] is the number of times a
|
||||
* value with bit b set has been generated. */
|
||||
size_t *stats = NULL;
|
||||
size_t stats_len;
|
||||
int full_stats;
|
||||
size_t i;
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
|
||||
bound_hex ) );
|
||||
ASSERT_ALLOC( result, limbs * ciL );
|
||||
|
||||
n_bits = mbedtls_mpi_core_bitlen( upper_bound, limbs );
|
||||
/* Consider a bound "small" if it's less than 2^5. This value is chosen
|
||||
* to be small enough that the probability of missing one value is
|
||||
* negligible given the number of iterations. It must be less than
|
||||
* 256 because some of the code below assumes that "small" values
|
||||
* fit in a byte. */
|
||||
if( n_bits <= 5 )
|
||||
{
|
||||
full_stats = 1;
|
||||
stats_len = (uint8_t) upper_bound[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
full_stats = 0;
|
||||
stats_len = n_bits;
|
||||
}
|
||||
ASSERT_ALLOC( stats, stats_len );
|
||||
|
||||
for( i = 0; i < (size_t) iterations; i++ )
|
||||
{
|
||||
mbedtls_test_set_step( i );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_core_random( result,
|
||||
min, upper_bound, limbs,
|
||||
mbedtls_test_rnd_std_rand, NULL ) );
|
||||
|
||||
/* Temporarily use a legacy MPI for analysis, because the
|
||||
* necessary auxiliary functions don't exist yet in core. */
|
||||
mbedtls_mpi B = {1, limbs, upper_bound};
|
||||
mbedtls_mpi R = {1, limbs, result};
|
||||
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &R, min ) >= 0 );
|
||||
if( full_stats )
|
||||
{
|
||||
uint8_t value;
|
||||
TEST_EQUAL( 0, mbedtls_mpi_write_binary( &R, &value, 1 ) );
|
||||
TEST_ASSERT( value < stats_len );
|
||||
++stats[value];
|
||||
}
|
||||
else
|
||||
{
|
||||
for( b = 0; b < n_bits; b++ )
|
||||
stats[b] += mbedtls_mpi_get_bit( &R, b );
|
||||
}
|
||||
}
|
||||
|
||||
if( full_stats )
|
||||
{
|
||||
for( b = min; b < stats_len; b++ )
|
||||
{
|
||||
mbedtls_test_set_step( 1000000 + b );
|
||||
/* Assert that each value has been reached at least once.
|
||||
* This is almost guaranteed if the iteration count is large
|
||||
* enough. This is a very crude way of checking the distribution.
|
||||
*/
|
||||
TEST_ASSERT( stats[b] > 0 );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
bound_bytes.len = limbs * sizeof( mbedtls_mpi_uint );
|
||||
ASSERT_ALLOC( bound_bytes.x, bound_bytes.len );
|
||||
mbedtls_mpi_core_write_be( upper_bound, limbs,
|
||||
bound_bytes.x, bound_bytes.len );
|
||||
int statistically_safe_all_the_way =
|
||||
is_significantly_above_a_power_of_2( &bound_bytes );
|
||||
for( b = 0; b < n_bits; b++ )
|
||||
{
|
||||
mbedtls_test_set_step( 1000000 + b );
|
||||
/* Assert that each bit has been set in at least one result and
|
||||
* clear in at least one result. Provided that iterations is not
|
||||
* too small, it would be extremely unlikely for this not to be
|
||||
* the case if the results are uniformly distributed.
|
||||
*
|
||||
* As an exception, the top bit may legitimately never be set
|
||||
* if bound is a power of 2 or only slightly above.
|
||||
*/
|
||||
if( statistically_safe_all_the_way || b != n_bits - 1 )
|
||||
{
|
||||
TEST_ASSERT( stats[b] > 0 );
|
||||
}
|
||||
TEST_ASSERT( stats[b] < (size_t) iterations );
|
||||
}
|
||||
}
|
||||
|
||||
exit:
|
||||
mbedtls_free( bound_bytes.x );
|
||||
mbedtls_free( upper_bound );
|
||||
mbedtls_free( result );
|
||||
mbedtls_free( stats );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before )
|
||||
{
|
||||
mbedtls_mpi upper_bound;
|
||||
mbedtls_mpi result;
|
||||
|
||||
mbedtls_mpi_init( &upper_bound );
|
||||
mbedtls_mpi_init( &result );
|
||||
|
||||
if( before != 0 )
|
||||
{
|
||||
/* Set result to sign(before) * 2^(|before|-1) */
|
||||
TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 );
|
||||
if( before < 0 )
|
||||
before = - before;
|
||||
TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 );
|
||||
}
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
|
||||
bound_bytes->x, bound_bytes->len ) );
|
||||
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
|
||||
mbedtls_test_rnd_std_rand, NULL ) );
|
||||
TEST_ASSERT( sign_is_valid( &result ) );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
|
||||
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &upper_bound );
|
||||
mbedtls_mpi_free( &result );
|
||||
}
|
||||
/* END_CASE */
|
||||
|
||||
/* BEGIN_CASE */
|
||||
void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret )
|
||||
{
|
||||
mbedtls_mpi upper_bound;
|
||||
mbedtls_mpi result;
|
||||
int actual_ret;
|
||||
|
||||
mbedtls_mpi_init( &upper_bound );
|
||||
mbedtls_mpi_init( &result );
|
||||
|
||||
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
|
||||
bound_bytes->x, bound_bytes->len ) );
|
||||
actual_ret = mbedtls_mpi_random( &result, min, &upper_bound,
|
||||
mbedtls_test_rnd_std_rand, NULL );
|
||||
TEST_EQUAL( expected_ret, actual_ret );
|
||||
|
||||
exit:
|
||||
mbedtls_mpi_free( &upper_bound );
|
||||
mbedtls_mpi_free( &result );
|
||||
}
|
||||
/* END_CASE */
|
Loading…
x
Reference in New Issue
Block a user