Move some files to framework repository

Signed-off-by: David Horstmann <david.horstmann@arm.com>
This commit is contained in:
David Horstmann 2024-05-03 14:33:44 +01:00
parent f1415b65d0
commit b66f0392ea
21 changed files with 0 additions and 5781 deletions

View File

@ -1,3 +0,0 @@
# This file needs to exist to make mbedtls_dev a package.
# Among other things, this allows modules in this directory to make
# relative imports.

View File

@ -1,237 +0,0 @@
"""Sample key material for asymmetric key types.
Meant for use in crypto_knowledge.py.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import binascii
import re
from typing import Dict
STR_TRANS_REMOVE_BLANKS = str.maketrans('', '', ' \t\n\r')
def unhexlify(text: str) -> bytes:
return binascii.unhexlify(text.translate(STR_TRANS_REMOVE_BLANKS))
def construct_asymmetric_key_data(src) -> Dict[str, Dict[int, bytes]]:
"""Split key pairs into separate table entries and convert hex to bytes.
Input format: src[abbreviated_type][size] = (private_key_hex, public_key_hex)
Output format: dst['PSA_KEY_TYPE_xxx'][size] = key_bytes
"""
dst = {} #type: Dict[str, Dict[int, bytes]]
for typ in src:
private = 'PSA_KEY_TYPE_' + re.sub(r'(\(|\Z)', r'_KEY_PAIR\1', typ, 1)
public = 'PSA_KEY_TYPE_' + re.sub(r'(\(|\Z)', r'_PUBLIC_KEY\1', typ, 1)
dst[private] = {}
dst[public] = {}
for size in src[typ]:
dst[private][size] = unhexlify(src[typ][size][0])
dst[public][size] = unhexlify(src[typ][size][1])
return dst
## These are valid keys that don't try to exercise any edge cases. They're
## either test vectors from some specification, or randomly generated. All
## pairs consist of a private key and its public key.
#pylint: disable=line-too-long
ASYMMETRIC_KEY_DATA = construct_asymmetric_key_data({
'ECC(PSA_ECC_FAMILY_SECP_K1)': {
192: ("297ac1722ccac7589ecb240dc719842538ca974beb79f228",
"0426b7bb38da649ac2138fc050c6548b32553dab68afebc36105d325b75538c12323cb0764789ecb992671beb2b6bef2f5"),
225: ("0024122bf020fa113f6c0ac978dfbd41f749257a9468febdbe0dc9f7e8",
"042cc7335f4b76042bed44ef45959a62aa215f7a5ff0c8111b8c44ed654ee71c1918326ad485b2d599fe2a6eab096ee26d977334d2bac6d61d"),
256: ("7fa06fa02d0e911b9a47fdc17d2d962ca01e2f31d60c6212d0ed7e3bba23a7b9",
"045c39154579efd667adc73a81015a797d2c8682cdfbd3c3553c4a185d481cdc50e42a0e1cbc3ca29a32a645e927f54beaed14c9dbbf8279d725f5495ca924b24d"),
},
'ECC(PSA_ECC_FAMILY_SECP_R1)': {
192: ("d83b57a59c51358d9c8bbb898aff507f44dd14cf16917190",
"04e35fcbee11cec3154f80a1a61df7d7612de4f2fd70c5608d0ee3a4a1a5719471adb33966dd9b035fdb774feeba94b04c"),
224: ("872f203b3ad35b7f2ecc803c3a0e1e0b1ed61cc1afe71b189cd4c995",
"046f00eadaa949fee3e9e1c7fa1247eecec86a0dce46418b9bd3117b981d4bd0ae7a990de912f9d060d6cb531a42d22e394ac29e81804bf160"),
256: ("49c9a8c18c4b885638c431cf1df1c994131609b580d4fd43a0cab17db2f13eee",
"047772656f814b399279d5e1f1781fac6f099a3c5ca1b0e35351834b08b65e0b572590cdaf8f769361bcf34acfc11e5e074e8426bdde04be6e653945449617de45"),
384: ("3f5d8d9be280b5696cc5cc9f94cf8af7e6b61dd6592b2ab2b3a4c607450417ec327dcdcaed7c10053d719a0574f0a76a",
"04d9c662b50ba29ca47990450e043aeaf4f0c69b15676d112f622a71c93059af999691c5680d2b44d111579db12f4a413a2ed5c45fcfb67b5b63e00b91ebe59d09a6b1ac2c0c4282aa12317ed5914f999bc488bb132e8342cc36f2ca5e3379c747"),
521: ("01b1b6ad07bb79e7320da59860ea28e055284f6058f279de666e06d435d2af7bda28d99fa47b7dd0963e16b0073078ee8b8a38d966a582f46d19ff95df3ad9685aae",
"04001de142d54f69eb038ee4b7af9d3ca07736fd9cf719eb354d69879ee7f3c136fb0fbf9f08f86be5fa128ec1a051d3e6c643e85ada8ffacf3663c260bd2c844b6f5600cee8e48a9e65d09cadd89f235dee05f3b8a646be715f1f67d5b434e0ff23a1fc07ef7740193e40eeff6f3bcdfd765aa9155033524fe4f205f5444e292c4c2f6ac1"),
},
'ECC(PSA_ECC_FAMILY_SECP_R2)': {
160: ("00bf539a1cdda0d7f71a50a3f98aec0a2e8e4ced1e",
"049570d541398665adb5cfa16f5af73b3196926bbd4b876bdb80f8eab20d0f540c22f4de9c140f6d7b"),
},
'ECC(PSA_ECC_FAMILY_SECT_K1)': {
163: ("03ebc8fcded2d6ab72ec0f75bdb4fd080481273e71",
"0406f88f90b4b65950f06ce433afdb097e320f433dc2062b8a65db8fafd3c110f46bc45663fbf021ee7eb9"),
233: ("41f08485ce587b06061c087e76e247c359de2ba9927ee013b2f1ed9ca8",
"0401e9d7189189f773bd8f71be2c10774ba18842434dfa9312595ea545104400f45a9d5675647513ba75b079fe66a29daac2ec86a6a5d4e75c5f290c1f"),
239: ("1a8069ce2c2c8bdd7087f2a6ab49588797e6294e979495602ab9650b9c61",
"04068d76b9f4508762c2379db9ee8b87ad8d86d9535132ffba3b5680440cfa28eb133d4232faf1c9aba96af11aefe634a551440800d5f8185105d3072d"),
283: ("006d627885dd48b9ec6facb5b3865377d755b75a5d51440e45211c1f600e15eff8a881a0",
"0405f48374debceaadb46ba385fd92048fcc5b9af1a1c90408bf94a68b9378df1cbfdfb6fb026a96bea06d8f181bf10c020adbcc88b6ecff96bdc564a9649c247cede601c4be63afc3"),
409: ("3ff5e74d932fa77db139b7c948c81e4069c72c24845574064beea8976b70267f1c6f9a503e3892ea1dcbb71fcea423faa370a8",
"04012c587f69f68b308ba6dcb238797f4e22290ca939ae806604e2b5ab4d9caef5a74a98fd87c4f88d292dd39d92e556e16c6ecc3c019a105826eef507cd9a04119f54d5d850b3720b3792d5d03410e9105610f7e4b420166ed45604a7a1f229d80975ba6be2060e8b"),
571: ("005008c97b4a161c0db1bac6452c72846d57337aa92d8ecb4a66eb01d2f29555ffb61a5317225dcc8ca6917d91789e227efc0bfe9eeda7ee21998cd11c3c9885056b0e55b4f75d51",
"04050172a7fd7adf98e4e2ed2742faa5cd12731a15fb0dbbdf75b1c3cc771a4369af6f2fa00e802735650881735759ea9c79961ded18e0daa0ac59afb1d513b5bbda9962e435f454fc020b4afe1445c2302ada07d295ec2580f8849b2dfa7f956b09b4cbe4c88d3b1c217049f75d3900d36df0fa12689256b58dd2ef784ebbeb0564600cf47a841485f8cf897a68accd5a"),
},
'ECC(PSA_ECC_FAMILY_SECT_R1)': {
163: ("009b05dc82d46d64a04a22e6e5ca70ca1231e68c50",
"0400465eeb9e7258b11e33c02266bfe834b20bcb118700772796ee4704ec67651bd447e3011959a79a04cb"),
233: ("00e5e42834e3c78758088b905deea975f28dc20ef6173e481f96e88afe7f",
"0400cd68c8af4430c92ec7a7048becfdf00a6bae8d1b4c37286f2d336f2a0e017eca3748f4ad6d435c85867aa014eea1bd6d9d005bbd8319cab629001d"),
283: ("004cecad915f6f3c9bbbd92d1eb101eda23f16c7dad60a57c87c7e1fd2b29b22f6d666ad",
"04052f9ff887254c2d1440ba9e30f13e2185ba53c373b2c410dae21cf8c167f796c08134f601cbc4c570bffbc2433082cf4d9eb5ba173ecb8caec15d66a02673f60807b2daa729b765"),
409: ("00c22422d265721a3ae2b3b2baeb77bee50416e19877af97b5fc1c700a0a88916ecb9050135883accb5e64edc77a3703f4f67a64",
"0401aa25466b1d291846db365957b25431591e50d9c109fe2106e93bb369775896925b15a7bfec397406ab4fe6f6b1a13bf8fdcb9300fa5500a813228676b0a6c572ed96b0f4aec7e87832e7e20f17ca98ecdfd36f59c82bddb8665f1f357a73900e827885ec9e1f22"),
571: ("026ac1cdf92a13a1b8d282da9725847908745138f5c6706b52d164e3675fcfbf86fc3e6ab2de732193267db029dd35a0599a94a118f480231cfc6ccca2ebfc1d8f54176e0f5656a1",
"040708f3403ee9948114855c17572152a08f8054d486defef5f29cbffcfb7cfd9280746a1ac5f751a6ad902ec1e0525120e9be56f03437af196fbe60ee7856e3542ab2cf87880632d80290e39b1a2bd03c6bbf6225511c567bd2ff41d2325dc58346f2b60b1feee4dc8b2af2296c2dc52b153e0556b5d24152b07f690c3fa24e4d1d19efbdeb1037833a733654d2366c74"),
},
'ECC(PSA_ECC_FAMILY_SECT_R2)': {
163: ("0210b482a458b4822d0cb21daa96819a67c8062d34",
"0403692601144c32a6cfa369ae20ae5d43c1c764678c037bafe80c6fd2e42b7ced96171d9c5367fd3dca6f"),
},
'ECC(PSA_ECC_FAMILY_BRAINPOOL_P_R1)': {
160: ("69502c4fdaf48d4fa617bdd24498b0406d0eeaac",
"04d4b9186816358e2f9c59cf70748cb70641b22fbab65473db4b4e22a361ed7e3de7e8a8ddc4130c5c"),
192: ("1688a2c5fbf4a3c851d76a98c3ec88f445a97996283db59f",
"043fdd168c179ff5363dd71dcd58de9617caad791ae0c37328be9ca0bfc79cebabf6a95d1c52df5b5f3c8b1a2441cf6c88"),
224: ("a69835dafeb5da5ab89c59860dddebcfd80b529a99f59b880882923c",
"045fbea378fc8583b3837e3f21a457c31eaf20a54e18eb11d104b3adc47f9d1c97eb9ea4ac21740d70d88514b98bf0bc31addac1d19c4ab3cc"),
256: ("2161d6f2db76526fa62c16f356a80f01f32f776784b36aa99799a8b7662080ff",
"04768c8cae4abca6306db0ed81b0c4a6215c378066ec6d616c146e13f1c7df809b96ab6911c27d8a02339f0926840e55236d3d1efbe2669d090e4c4c660fada91d"),
320: ("61b8daa7a6e5aa9fccf1ef504220b2e5a5b8c6dc7475d16d3172d7db0b2778414e4f6e8fa2032ead",
"049caed8fb4742956cc2ad12a9a1c995e21759ef26a07bc2054136d3d2f28bb331a70e26c4c687275ab1f434be7871e115d2350c0c5f61d4d06d2bcdb67f5cb63fdb794e5947c87dc6849a58694e37e6cd"),
384: ("3dd92e750d90d7d39fc1885cd8ad12ea9441f22b9334b4d965202adb1448ce24c5808a85dd9afc229af0a3124f755bcb",
"04719f9d093a627e0d350385c661cebf00c61923566fe9006a3107af1d871bc6bb68985fd722ea32be316f8e783b7cd1957785f66cfc0cb195dd5c99a8e7abaa848553a584dfd2b48e76d445fe00dd8be59096d877d4696d23b4bc8db14724e66a"),
512: ("372c9778f69f726cbca3f4a268f16b4d617d10280d79a6a029cd51879fe1012934dfe5395455337df6906dc7d6d2eea4dbb2065c0228f73b3ed716480e7d71d2",
"0438b7ec92b61c5c6c7fbc28a4ec759d48fcd4e2e374defd5c4968a54dbef7510e517886fbfc38ea39aa529359d70a7156c35d3cbac7ce776bdb251dd64bce71234424ee7049eed072f0dbc4d79996e175d557e263763ae97095c081e73e7db2e38adc3d4c9a0487b1ede876dc1fca61c902e9a1d8722b8612928f18a24845591a"),
},
'ECC(PSA_ECC_FAMILY_MONTGOMERY)': {
255: ("70076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c6a",
"8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a"),
448: ("e4e49f52686f9ee3b638528f721f1596196ffd0a1cddb64c3f216f06541805cfeb1a286dc78018095cdfec050e8007b5f4908962ba20d6c1",
"c0d3a5a2b416a573dc9909f92f134ac01323ab8f8e36804e578588ba2d09fe7c3e737f771ca112825b548a0ffded6d6a2fd09a3e77dec30e"),
},
'ECC(PSA_ECC_FAMILY_TWISTED_EDWARDS)': {
255: ("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
"d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a"),
448: ("6c82a562cb808d10d632be89c8513ebf6c929f34ddfa8c9f63c9960ef6e348a3528c8a3fcc2f044e39a3fc5b94492f8f032e7549a20098f95b",
"5fd7449b59b461fd2ce787ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf124769b46c7061bd6783df1e50f6cd1fa1abeafe8256180"),
},
'RSA': {
1024: ("""
3082025e
020100
02818100af057d396ee84fb75fdbb5c2b13c7fe5a654aa8aa2470b541ee1feb0b12d25c79711531249e1129628042dbbb6c120d1443524ef4c0e6e1d8956eeb2077af12349ddeee54483bc06c2c61948cd02b202e796aebd94d3a7cbf859c2c1819c324cb82b9cd34ede263a2abffe4733f077869e8660f7d6834da53d690ef7985f6bc3
0203010001
02818100874bf0ffc2f2a71d14671ddd0171c954d7fdbf50281e4f6d99ea0e1ebcf82faa58e7b595ffb293d1abe17f110b37c48cc0f36c37e84d876621d327f64bbe08457d3ec4098ba2fa0a319fba411c2841ed7be83196a8cdf9daa5d00694bc335fc4c32217fe0488bce9cb7202e59468b1ead119000477db2ca797fac19eda3f58c1
024100e2ab760841bb9d30a81d222de1eb7381d82214407f1b975cbbfe4e1a9467fd98adbd78f607836ca5be1928b9d160d97fd45c12d6b52e2c9871a174c66b488113
024100c5ab27602159ae7d6f20c3c2ee851e46dc112e689e28d5fcbbf990a99ef8a90b8bb44fd36467e7fc1789ceb663abda338652c3c73f111774902e840565927091
024100b6cdbd354f7df579a63b48b3643e353b84898777b48b15f94e0bfc0567a6ae5911d57ad6409cf7647bf96264e9bd87eb95e263b7110b9a1f9f94acced0fafa4d
024071195eec37e8d257decfc672b07ae639f10cbb9b0c739d0c809968d644a94e3fd6ed9287077a14583f379058f76a8aecd43c62dc8c0f41766650d725275ac4a1
024100bb32d133edc2e048d463388b7be9cb4be29f4b6250be603e70e3647501c97ddde20a4e71be95fd5e71784e25aca4baf25be5738aae59bbfe1c997781447a2b24
""", """
308189
02818100af057d396ee84fb75fdbb5c2b13c7fe5a654aa8aa2470b541ee1feb0b12d25c79711531249e1129628042dbbb6c120d1443524ef4c0e6e1d8956eeb2077af12349ddeee54483bc06c2c61948cd02b202e796aebd94d3a7cbf859c2c1819c324cb82b9cd34ede263a2abffe4733f077869e8660f7d6834da53d690ef7985f6bc3
0203010001
"""),
1026: ("""
3082025e
020100
02818102d09661fc74224ba7be7907abef4f5e8bcc264a802c978f7eaa5855ada05436d75db768d20f68595dbcc3d725b138e80b247e44a4163a0542fab612acbbde45f2e93894aa253bddef6a7becdc9cc29a99bacf48dc6e38db7a33e9ac924c520fc6be7d6e5646c1d67fb8b2b97ac60beecc3bb8e75bed8315aa3fe46f748a66d6ef
0203010001
0281806a4a346beba97f655fe834647d2944f5f40815e7302caf02ed179893c2d989395d5e877cacbf24a77a079d3db71580ccdbf63023d00f80e52f5c1a0716b323b7bfcbdc8a1781c44c4153e3da228d17b2dc78eb1f44cff60fe1150808a6e38ba2470aee2e948a6898ddadea56d9470927aca8d94a0338c11a8e95715b5f94e011
024101f5418534c36236fc9fd38934d7c06dfed3829151ccab56b6330c641f7796a71924cf8119ca26e186ecd3068d6607a05260db4857651980436891adde9eb92ab7
02410170042fbdbaba1e102b7f7f1dc9d940cfdcd85dd0ea65f543c6432e9c5480724bb49b1e5f80ca2b9f84cd6644bfb2e3d0968090b89f534dc2951e606db909dd89
0241014b6c1aeb1c14a04ec04e5975fb015cb914984c054dd22bef24299939c514733f88bb3a9d16b04685b3a883b8923190ab672715d9d31add57b4983de1e8087e59
02410117bf76f308b0560e00a2c864427dcd50b5161c2aa523a00f46f4e6c79b4c90958fd2a282028aac227477169888085a38c34f33b3c41934f1071db23b75ff53d1
02410120a428b4e0c4a6f202920fd49cc9886e6b6719d40a3ad0604f5d5efd5ef6973a573ab324f38ecb8e669a69341597081e240b6ae4e2714887dd78dadaeb0b9216
""", """
308189
02818102d09661fc74224ba7be7907abef4f5e8bcc264a802c978f7eaa5855ada05436d75db768d20f68595dbcc3d725b138e80b247e44a4163a0542fab612acbbde45f2e93894aa253bddef6a7becdc9cc29a99bacf48dc6e38db7a33e9ac924c520fc6be7d6e5646c1d67fb8b2b97ac60beecc3bb8e75bed8315aa3fe46f748a66d6ef
0203010001
"""),
1028: ("""
3082025e
020100
0281810e62a76f0e0b59683a7ebf7cbfd37b1d1781d8f1b900604b507f0f04c72a3d340d067bcd53bea3caff4e4ae694f0b6d8f591a4167fbf7f372ab57e83a69a3f26f447bcf582bc9621a30a3b44d6b43e986d1a867b07489e4f9bfcadaa82a2782dc2729a631fb1fb9ffb794b4e53c76239e04d4a8f80352588db29462dde18237cf5
0203010001
02818101cfa0422e3bb60c15ef2e96db4499e789f5d634ea64567b2cdd6e2bdd121f85edccdee9b4ed178c5f33816101a7c371518b3e23f9fdc71b90242cd310b6b31428b0b64eb9596be0cc044cc85048982f90b706e66ccdd39ad5a1a7b64cf034eac0c35d7ace93f2bcd3ce243bd8f83b46f509ca2f805063002af2bb2d88b6ee36a9
024103f0886d2977526f3f3f6a075600232ce3008517276dd3721dee08fd6c999fc976b9e8dd2bc143385fa4b48735ce81c66b501d7129ee7860cfbef23b5da91e6c2d
024103a6c8734aace59d5f386f97de450f8a12d63ae6ac15d336e010c9fcf03a32f0611881ac6cd8b3f989925c0f025af26cf26aebd7d9b04eb503048dca2f503c28e9
0241019b300451c3b47866f113e9a9c6a490c87c8dc6c2eca42902caea1f6907b97e0a4a02072aafc1185ae66c34345bddcd683361cda1aaf8a98009f9f8fa56d97081
02401bcca849173d38e1e50ec48872ab54a2dcc621a80a7a1e8ea951287988718d5e85d90d64ab4926e9a575a168a385c421ad765813fc3f4af8cd00de7b6bba6e49
0241036dcf69f6e548c8acfb536fb6cd186f8b8f20d313361d0447c1b5e380f4113e578b31e867dda47d44ad3761e793f725031b8d379f389de277a9a0137651df548a
""", """
308189
0281810e62a76f0e0b59683a7ebf7cbfd37b1d1781d8f1b900604b507f0f04c72a3d340d067bcd53bea3caff4e4ae694f0b6d8f591a4167fbf7f372ab57e83a69a3f26f447bcf582bc9621a30a3b44d6b43e986d1a867b07489e4f9bfcadaa82a2782dc2729a631fb1fb9ffb794b4e53c76239e04d4a8f80352588db29462dde18237cf5
0203010001
"""),
1030: ("""
3082025f
020100
0281812b7cd197f5796d1f8e576b2b37723fd9210814ef1c1995f9899d50058f379d239c66878e922f34c6ae3672c8598fcd5d47b764d2ec156e134d03cf6a94d38d2ea8bc76dbbc60c4b974219090eaf287497d7dcf7f119cfa867496f7e91c12b5d552e1d1461a80dbe9a59db3b016c6c0141c3b2a0e226089b855cb88ef656408bd89
0203010001
0281810210d5ff531cacb22f8cf7dd1fd9fb0376f3647f2e9ab3df9c89b9ad3c98e68b89adeb29901dd2f2cf2ac1f817726278830ec8a8d0fdd19d496ec6bc683671174786b7d6a8e822fa71d65ad35abbdf0e6e55ff2c1821b62bc630192160e5c9b3dcafc65ae6b2a088fbc5591da58a45dd7a30960f7d3def75b80cdf73247360e8fb
0241072e371a3ba861e78e3eb9313065faab0a97216e9544bfc2d5b403844b43273705755a85aa0baf7114770cfeca20bca17ac19bc4cbba106a33b3dddca0fb535f33
0241060e6af37ab4ea11f52b9344e7160eb2a53f1075e1229a7f10a301de3359f53e981ea0e17df0fb380f089e5c37dd40daa29eefd205f5c87b38f8fef636b57ba053
0241023a5dd09ef83540b30b554d24f64f9c28d212068cfc62ffe26d53b605e05557a632ee9e90cfc56531f36aadd82be63bb8aa405a04d8bbe5281bc45883fed7b4af
0241041de6dbad4caf5417a9504965201c4b99827de8f369f7456a84b3ef5c4ec9238c7a3d782a8915ebec643a698b5bee0af0c243592bce0042aadeaf49a4b4c6dd9b
024105d32dee952b503b536fcecf19ec08236a9cd945c49551bf99f15b674fc21aa199f4c4211f0f0007c417c1fb4155326a2142fca454bbd38d6dbc6caa7ac335a17c
""", """
308189
0281812b7cd197f5796d1f8e576b2b37723fd9210814ef1c1995f9899d50058f379d239c66878e922f34c6ae3672c8598fcd5d47b764d2ec156e134d03cf6a94d38d2ea8bc76dbbc60c4b974219090eaf287497d7dcf7f119cfa867496f7e91c12b5d552e1d1461a80dbe9a59db3b016c6c0141c3b2a0e226089b855cb88ef656408bd89
0203010001
"""),
1536: ("""
3082037b
020100
0281c100c870feb6ca6b1d2bd9f2dd99e20f1fe2d7e5192de662229dbe162bd1ba66336a7182903ca0b72796cd441c83d24bcdc3e9a2f5e4399c8a043f1c3ddf04754a66d4cfe7b3671a37dd31a9b4c13bfe06ee90f9d94ddaa06de67a52ac863e68f756736ceb014405a6160579640f831dddccc34ad0b05070e3f9954a58d1815813e1b83bcadba814789c87f1ef2ba5d738b793ec456a67360eea1b5faf1c7cc7bf24f3b2a9d0f8958b1096e0f0c335f8888d0c63a51c3c0337214fa3f5efdf6dcc35
0203010001
0281c06d2d670047973a87752a9d5bc14f3dae00acb01f593aa0e24cf4a49f932931de4bbfb332e2d38083da80bc0b6d538edba479f7f77d0deffb4a28e6e67ff6273585bb4cd862535c946605ab0809d65f0e38f76e4ec2c3d9b8cd6e14bcf667943892cd4b34cc6420a439abbf3d7d35ef73976dd6f9cbde35a51fa5213f0107f83e3425835d16d3c9146fc9e36ce75a09bb66cdff21dd5a776899f1cb07e282cca27be46510e9c799f0d8db275a6be085d9f3f803218ee3384265bfb1a3640e8ca1
026100e6848c31d466fffefc547e3a3b0d3785de6f78b0dd12610843512e495611a0675509b1650b27415009838dd8e68eec6e7530553b637d602424643b33e8bc5b762e1799bc79d56b13251d36d4f201da2182416ce13574e88278ff04467ad602d9
026100de994fdf181f02be2bf9e5f5e4e517a94993b827d1eaf609033e3a6a6f2396ae7c44e9eb594cf1044cb3ad32ea258f0c82963b27bb650ed200cde82cb993374be34be5b1c7ead5446a2b82a4486e8c1810a0b01551609fb0841d474bada802bd
026076ddae751b73a959d0bfb8ff49e7fcd378e9be30652ecefe35c82cb8003bc29cc60ae3809909baf20c95db9516fe680865417111d8b193dbcf30281f1249de57c858bf1ba32f5bb1599800e8398a9ef25c7a642c95261da6f9c17670e97265b1
0260732482b837d5f2a9443e23c1aa0106d83e82f6c3424673b5fdc3769c0f992d1c5c93991c7038e882fcda04414df4d7a5f4f698ead87851ce37344b60b72d7b70f9c60cae8566e7a257f8e1bef0e89df6e4c2f9d24d21d9f8889e4c7eccf91751
026009050d94493da8f00a4ddbe9c800afe3d44b43f78a48941a79b2814a1f0b81a18a8b2347642a03b27998f5a18de9abc9ae0e54ab8294feac66dc87e854cce6f7278ac2710cb5878b592ffeb1f4f0a1853e4e8d1d0561b6efcc831a296cf7eeaf
""", """
3081c9
0281c100c870feb6ca6b1d2bd9f2dd99e20f1fe2d7e5192de662229dbe162bd1ba66336a7182903ca0b72796cd441c83d24bcdc3e9a2f5e4399c8a043f1c3ddf04754a66d4cfe7b3671a37dd31a9b4c13bfe06ee90f9d94ddaa06de67a52ac863e68f756736ceb014405a6160579640f831dddccc34ad0b05070e3f9954a58d1815813e1b83bcadba814789c87f1ef2ba5d738b793ec456a67360eea1b5faf1c7cc7bf24f3b2a9d0f8958b1096e0f0c335f8888d0c63a51c3c0337214fa3f5efdf6dcc35
0203010001
"""),
2048: ("""
308204a3
020100
0282010100f7bb6b8eab40491cd64455ec04d4ed8db5051a9738fc7af73ff3b097511cce40aaf76537b1353504427986b7b2b53a964a6937b558ec0d1dea274af2b8fff2f094c243fa577266a79db0c26ffe30416d23ef05dd5fecab413ebbb4f8526ae720a94584226b37d92ef463fc736cb38e530e7488d9162f5726807bc543138a2d258adb4d680221c2532381ccfa81bc89bc3d7b84039c2df41ce3ec8db91c2380e781ba3aa9e23b74ed9973d4908efca47aa8d9b7b0a4423297a404427c3f3cd6e0782e4553880f06ba39a64f4a7b0eef921a6050a207cefadcf07394a3e18ea915dc8497e7ae61fc3162f62f5065a692af077266f7360c2076cebeaf14cb22c1ed
0203010001
0282010000b8962dce604bc62e7678f48ca80cfff456ad36e2f6d329cc911a42ba7cf5b9b8f5aae1005e4a06f6e591279038d8508f2b62badfa5223da3cc94fa8360d5556f6d6852be75ea08135cac1834da719a4e7837e166d1d2c6c816b64661c10766b02f705cc4489f947428255835a909214341c21335ae12181dd81e611d59b1db70667bebd7e92b71e1d388318d3ec14d616f72c231f6727a183e6818285bd65f6572cadc9012248821b2d0ae6cedd30ca440d4d34cd77e2cf6b40ed2c7d856b30d474733fce0fb695c3e6530c079aed955e4073055f2655d4b671e291fde400f2f06d0b33f87d261e0ad3dae48a913841b34cfed03790fcaee00de2e90fb9621
02818100fcbe89cd1aa319e49ef4f72149bf06da57dcc64d3de605e9ff3e76fc66f4b1e2878245ffd71990511b17e97f33818889a8c21b5527fd181327affe88f9bba670c4e6f1e6309bd0323074e4cbcf23dce3c19b8d5495f56a93059ba7414f28ed1ec906ad18c63de1148abcfe9be7986000f425e580b70e43e48e24fa9d51aaae4d
02818100faec5a7bed2e53cfca1e167db4641db5a00fe2c328125423d594789f3ec072c623e7afbdee0089fd26307651f6d3611a88af28c34585d5cb713a650c35933f58944db9bd15ba9fc28b07e6705b7b3ef1ccb48d21a53569c8b84c444b61ea5c6e67b54f0afd852ffb8c92a111fab8677263eeb80cf1a3403b4a9a209776947221
0281802ff99afeabc7b9ea83a1cc272d706d4494d8fb6b3e0ca3a2bf28843d74ed8db68a3258472ff5524792f4ff057e296059810717591ab61813cabcc57c0aab6bf48bebaa8f1f3af45212909dbd721c449996ee87ed3e69cf49090f7ab812e699dbf61ca64ec592895ef4d6db1d8ce08798a6bf6ac8fbf6613cc91e8bd3c0e4bd21
02818100b29b34590bddb308afecb4c3ab78abf1114add755e7b956aa0677b6896a933c937db7dabaad2b565fd1df7caa5ef9629e5eb100fd6d7c9f372d846fee6cfb6025e25e934df57a4ca3c5e5637d9d6235ac80428852f6c92acae0a937e38e731fde0521d3e4c70d653ae9edc89c8b623e4379fbf606f4b6db8068528f7c70f2921
0281800ed47ae05b275a23a7dfe3ffb727e3a268e626a59d401d2d846de26954ff54fc9ed93a9af33fac2c967a18e0f86145083e39923454bc10da5f4937e836b99851956bffb301ce9e06789786693213fcde6d5f2933d52bb29dc340ea011257788d3c5775eb6569230aafbf08752d40a8419de71b01d4927e27c1079caada0568b1
""", """
3082010a
0282010100f7bb6b8eab40491cd64455ec04d4ed8db5051a9738fc7af73ff3b097511cce40aaf76537b1353504427986b7b2b53a964a6937b558ec0d1dea274af2b8fff2f094c243fa577266a79db0c26ffe30416d23ef05dd5fecab413ebbb4f8526ae720a94584226b37d92ef463fc736cb38e530e7488d9162f5726807bc543138a2d258adb4d680221c2532381ccfa81bc89bc3d7b84039c2df41ce3ec8db91c2380e781ba3aa9e23b74ed9973d4908efca47aa8d9b7b0a4423297a404427c3f3cd6e0782e4553880f06ba39a64f4a7b0eef921a6050a207cefadcf07394a3e18ea915dc8497e7ae61fc3162f62f5065a692af077266f7360c2076cebeaf14cb22c1ed
0203010001
"""),
4096: ("""
30820929
020100
0282020100cc8725f6b38d5d01aeeb07d36e03de4d31a0261ce74fe11a895ecfd13d168aee932af135ffbb849877273897081f3f7593c14ae82bc266c10544f726ae1ccf133d8a4018d380dfa25251c011107b7513a943346aa0e0dec11d8d7fa25644653c118daabce6d41f066f6621768801478055780e91b68ea3c95856d172a89032b39c824e8b7dc1a3f8aee4f6b368baa3cd68f50d52680117e9b913d7f8c852a0d1008e8b87a5c97e37afc11a080550557b8b4dcbd8e192ed3366d83a09d27c77e150f66855b5dcfdb2df151bd7f444250eaf6fe3f236826c81fa848101bfaad535ffb522d6ff97c9dd1e43b82cce2921d153c15450c4724ffd3efdca578e013650a03a5cf501fc58600fb5c860c0ef0cfe0ac0712d441313dca41a4d7d411e6c83b2151749d28be4692f62373db07e4a79051c5682ec20d491c4cfc7bc140f35fa15e5a1fa756d65b8ef93addf4c47c4a35b184f22a1ef089948f946f6faeb6470f26746e658cf9b4177417842e6d373558089aff721b930e9ec61b4f6a02c052c6924d39a5bbb15ed1106c4010f4dd69c79d042c8b31661b1ee486bc69db5f2f07a50d85b20699d601315625bb869629c7f4c5d48b211d097f438acec95973a38d421090af0f13484e4e94b8cb5efc18507f4b931df39987ffb2830293e4da381aaf70b3292952ef934e2b40fdebba3d9701b76e1be548274b2602d888537482d
0203010001
028202001a943e9c0089f0aa0116048a96abb486321a86916f82fb352460789fcfb1400550853e5afedc9ad6e877259cc4feb093c24b968534f89abb5f48aed8ad3c4bb1cba7cd7c1c724d3dae36770010b5068a334f2b3ee720c9f9ed320001f3f587f5662f939e605df519343d60c0635ccd32b188bc55f5d434173c9e6db2199341af833990e50246f99cddf79dd2c35babe14c103a76b8d2d98d73528f98c249b0a1f09155b31f599fc833542422a2342623bbbef4ac7ee605e2cdecf01fea25683bd4f66ca924ccef00418adff730c4714f66ffa2af0da3e5df7f539c634289fc12bc24093ec8f0ec180af0907cec1ebec911fa180fb5f3c80ed852896ad6e6b3eccb44de62193d52118cab2b171071d5fdaa7c4288fc7766d57774f4be46151bb90ace7c10c215f62ed26e52e6122436f532bd54fc08272adb216a2db433d5699c40ad58faa2660898ffccfc98002f8bb0361b4cf9ed6e93c1ca96d34a1ef40460f85918cfde4a8193b51ecea4b3903cae924a8fad5f8308954c9f19a7597bf0a75126a557e49f8bbd31fc4e8556f230640bf36204c6cf3d56dca5a41d860307ba6705a698681100a327f91739c486c470ba71d03d285314b0d7d04008e03f2a2b85e7c243d6fd9b97a02168c069ec572d3f0ca15ebcb1739f3a0b3c147a88e0b74f45a007ae927d6f822bf50b87b1e93fe7d9180bc6bc12bde6c8070d10c97331
0282010100f50ebceac9d3c64482a8c265d6365461aa4a31a6a7633a24c8e34794ecdfcab1d6b52fb6a5f38055cc32d6a61b889550de27b3d0bd68b6d4fda041598ab98887143988576806b1c48720794902952ebe1bf0def65a0e6f94067056e6864fa2882e3a16f246282093d037639078182dd0a6eb21d3bad0637901a268b14c632c9d0b1690ed88abdde03f528247aa2e41557d0865ad34e53ff53ae0e5dea195d93fe65c25871f6f23adf34b6e960c2978f2b7475dafce6cbb26a53934d26c193d67f32de91035eeb89022beb7d5df784ac20ca6ab91bf6b775b6c9416f605b4841736cbfbd22ad98ab2e8428457e0793f5af40e550b48765d59e6e1b4a4a1f571f1
0282010100d5a91d4d44bb9b73c1fe0248925e2c0ec1de51390bd8a73b453da51ae29325ae7657089fd4ee4a2fd96e345b57f672d7d484fde99189ab0a6365bf2b38680d6bb947f4b217be660323c26b86d643ae686d82e36ec00cfd038942443caa04a0f91e68ec717935b45e790311be56440d7176949594688ed1dd5c9103c57c158d05e4c37b98d81898030744a64f6ebdbf750aab79757e34dac422163ea7c0f42b97710c861978b24100385aad727e5f3836a74ea4bf1d36ef2a5edf9c9e8f996ef3191348450ea9f1d4a63db29cb06f63e5badb18e4d40f5112b658d1cc23cb65388aca03d141a6bc5fbd9429fe33d340d3e85bfa848908d60b562f894e8a337dfd
0282010100c4950f0d95dc51d791ad094d223b3113abc49af1e2a361f83242c8a07a28c8744315d3f1c44c82edd0c21398eacb75648ae1f48885f92379d6ffa08cd11126a99d9acd79b8946e3486659185f511718ec5e1432b02714426cdc77e9eacade36735161a643dcd60dcd2922c47af5f4e196c5d8124555f67fca148048dfe062cbaca334f0d8daeb96d73be9f8e17c1c55d6bd0b9a7e99fe1dfba5cc16a07dbaa8c6d220c64c9dda114a0f029052b3a75b0d73fe3b2ed7821e5cd7307a1a95fd1f7ba8760c8454b7c38fbf65c88b01cd273ba2c55c3b477e426ae025a2cffc4a095f2ba4e0779a24b765b85489f2a0e79b95fc0c38e2a91f12ef65ca749ce369431
028201002aa48e0c95e33bab66d4637048863314deec9819629be30499552c56a951e4fb64f309ed9c79d2a4aa28ac9a6e7be97fda1290fac4e94d11cdb4c8eabf5f450e72f4418a29e2fe493221e3840dcf8447a353b440ae63e93b83718e5ced31ef4ec91af7d5cdf3420478f27be019278be7515b665f305f10d3b55ddbfad64116dc4e4415aef3b234e4a5d6b5bab4c77a26c9f25f536bd4f0b4a478fc184f126c80d53742ac62c270e6b258a6b56b3365ecc28797a9ed12c1b91b265603ef751807bcc1747313f22729e1e3fe79f75cc3fb5dc7ccb81efacf9b847945a6109ecf9cf156505cbb55a3d317eb325661d18fe6bb416046837318053b365199334c03a1
0282010100ee63706030a4ece9fe3bddcfc49f5a83f37f63ebcb29dbdc999f6ff54b596f115cf1eca09990108a439518e996f689fdde89b2c67edc04bf8e366734c2ae3017ec14e042050e7c656840146ca048394dcebe90dd2195349bbad306569031b2ef6e9171d2ae7797c8844e548394ca3b768d8496e99ef63abb59b0ff7fc70eb53153dd0f59018a275acba701f2c76a15c894f53461fedf65bc25c2c5cec396e556a1a919bc7a056393d50644126dcdef9256642e65a6043cbce9497e192cf2cb33648e117f41dbf01900acb93b0c78ddf31f381f4db3f9ccbbb69093dabf2e89dbbc0cb72f20c005a2519e3a874146495d7aacf3416a422e560986f22f39456e7f
""", """
3082020a
0282020100cc8725f6b38d5d01aeeb07d36e03de4d31a0261ce74fe11a895ecfd13d168aee932af135ffbb849877273897081f3f7593c14ae82bc266c10544f726ae1ccf133d8a4018d380dfa25251c011107b7513a943346aa0e0dec11d8d7fa25644653c118daabce6d41f066f6621768801478055780e91b68ea3c95856d172a89032b39c824e8b7dc1a3f8aee4f6b368baa3cd68f50d52680117e9b913d7f8c852a0d1008e8b87a5c97e37afc11a080550557b8b4dcbd8e192ed3366d83a09d27c77e150f66855b5dcfdb2df151bd7f444250eaf6fe3f236826c81fa848101bfaad535ffb522d6ff97c9dd1e43b82cce2921d153c15450c4724ffd3efdca578e013650a03a5cf501fc58600fb5c860c0ef0cfe0ac0712d441313dca41a4d7d411e6c83b2151749d28be4692f62373db07e4a79051c5682ec20d491c4cfc7bc140f35fa15e5a1fa756d65b8ef93addf4c47c4a35b184f22a1ef089948f946f6faeb6470f26746e658cf9b4177417842e6d373558089aff721b930e9ec61b4f6a02c052c6924d39a5bbb15ed1106c4010f4dd69c79d042c8b31661b1ee486bc69db5f2f07a50d85b20699d601315625bb869629c7f4c5d48b211d097f438acec95973a38d421090af0f13484e4e94b8cb5efc18507f4b931df39987ffb2830293e4da381aaf70b3292952ef934e2b40fdebba3d9701b76e1be548274b2602d888537482d
0203010001
"""),
},
})

View File

@ -1,406 +0,0 @@
"""Common features for bignum in test generation framework."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
from abc import abstractmethod
import enum
from typing import Iterator, List, Tuple, TypeVar, Any
from copy import deepcopy
from itertools import chain
from math import ceil
from . import test_case
from . import test_data_generation
from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT
T = TypeVar('T') #pylint: disable=invalid-name
def invmod(a: int, n: int) -> int:
"""Return inverse of a to modulo n.
Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent
to long_invmod() in CPython.
"""
b, c = 1, 0
while n:
q, r = divmod(a, n)
a, b, c, n = n, c, b - q*c, r
# at this point a is the gcd of the original inputs
if a == 1:
return b
raise ValueError("Not invertible")
def invmod_positive(a: int, n: int) -> int:
"""Return a non-negative inverse of a to modulo n."""
inv = invmod(a, n)
return inv if inv >= 0 else inv + n
def hex_to_int(val: str) -> int:
"""Implement the syntax accepted by mbedtls_test_read_mpi().
This is a superset of what is accepted by mbedtls_test_read_mpi_core().
"""
if val in ['', '-']:
return 0
return int(val, 16)
def quote_str(val: str) -> str:
return "\"{}\"".format(val)
def bound_mpi(val: int, bits_in_limb: int) -> int:
"""First number exceeding number of limbs needed for given input value."""
return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb)
def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int:
"""First number exceeding maximum of given number of limbs."""
bits = bits_in_limb * limbs
return 1 << bits
def limbs_mpi(val: int, bits_in_limb: int) -> int:
"""Return the number of limbs required to store value."""
bit_length = max(val.bit_length(), 1)
return (bit_length + bits_in_limb - 1) // bits_in_limb
def combination_pairs(values: List[T]) -> List[Tuple[T, T]]:
"""Return all pair combinations from input values."""
return [(x, y) for x in values for y in values]
def bits_to_limbs(bits: int, bits_in_limb: int) -> int:
""" Return the appropriate ammount of limbs needed to store
a number contained in input bits"""
return ceil(bits / bits_in_limb)
def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int:
""" Return the hex digits need for a number of limbs. """
return 2 * ((limbs * bits_in_limb) // 8)
def hex_digits_max_int(val: str, bits_in_limb: int) -> int:
""" Return the first number exceeding maximum the limb space
required to store the input hex-string value. This method
weights on the input str_len rather than numerical value
and works with zero-padded inputs"""
n = ((1 << (len(val) * 4)) - 1)
l = limbs_mpi(n, bits_in_limb)
return bound_mpi_limbs(l, bits_in_limb)
def zfill_match(reference: str, target: str) -> str:
""" Zero pad target hex-string to match the limb size of
the reference input """
lt = len(target)
lr = len(reference)
target_len = lr if lt < lr else lt
return "{:x}".format(int(target, 16)).zfill(target_len)
class OperationCommon(test_data_generation.BaseTest):
"""Common features for bignum binary operations.
This adds functionality common in binary operation tests.
Attributes:
symbol: Symbol to use for the operation in case description.
input_values: List of values to use as test case inputs. These are
combined to produce pairs of values.
input_cases: List of tuples containing pairs of test case inputs. This
can be used to implement specific pairs of inputs.
unique_combinations_only: Boolean to select if test case combinations
must be unique. If True, only A,B or B,A would be included as a test
case. If False, both A,B and B,A would be included.
input_style: Controls the way how test data is passed to the functions
in the generated test cases. "variable" passes them as they are
defined in the python source. "arch_split" pads the values with
zeroes depending on the architecture/limb size. If this is set,
test cases are generated for all architectures.
arity: the number of operands for the operation. Currently supported
values are 1 and 2.
"""
symbol = ""
input_values = INPUTS_DEFAULT # type: List[str]
input_cases = [] # type: List[Any]
dependencies = [] # type: List[Any]
unique_combinations_only = False
input_styles = ["variable", "fixed", "arch_split"] # type: List[str]
input_style = "variable" # type: str
limb_sizes = [32, 64] # type: List[int]
arities = [1, 2]
arity = 2
suffix = False # for arity = 1, symbol can be prefix (default) or suffix
def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None:
self.val_a = val_a
self.val_b = val_b
# Setting the int versions here as opposed to making them @properties
# provides earlier/more robust input validation.
self.int_a = hex_to_int(val_a)
self.int_b = hex_to_int(val_b)
self.dependencies = deepcopy(self.dependencies)
if bits_in_limb not in self.limb_sizes:
raise ValueError("Invalid number of bits in limb!")
if self.input_style == "arch_split":
self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb))
self.bits_in_limb = bits_in_limb
@property
def boundary(self) -> int:
if self.arity == 1:
return self.int_a
elif self.arity == 2:
return max(self.int_a, self.int_b)
raise ValueError("Unsupported number of operands!")
@property
def limb_boundary(self) -> int:
return bound_mpi(self.boundary, self.bits_in_limb)
@property
def limbs(self) -> int:
return limbs_mpi(self.boundary, self.bits_in_limb)
@property
def hex_digits(self) -> int:
return hex_digits_for_limb(self.limbs, self.bits_in_limb)
def format_arg(self, val: str) -> str:
if self.input_style not in self.input_styles:
raise ValueError("Unknown input style!")
if self.input_style == "variable":
return val
else:
return val.zfill(self.hex_digits)
def format_result(self, res: int) -> str:
res_str = '{:x}'.format(res)
return quote_str(self.format_arg(res_str))
@property
def arg_a(self) -> str:
return self.format_arg(self.val_a)
@property
def arg_b(self) -> str:
if self.arity == 1:
raise AttributeError("Operation is unary and doesn't have arg_b!")
return self.format_arg(self.val_b)
def arguments(self) -> List[str]:
args = [quote_str(self.arg_a)]
if self.arity == 2:
args.append(quote_str(self.arg_b))
return args + self.result()
def description(self) -> str:
"""Generate a description for the test case.
If not set, case_description uses the form A `symbol` B, where symbol
is used to represent the operation. Descriptions of each value are
generated to provide some context to the test case.
"""
if not self.case_description:
if self.arity == 1:
format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}"
self.case_description = format_string.format(
self.symbol, self.int_a
)
elif self.arity == 2:
self.case_description = "{:x} {} {:x}".format(
self.int_a, self.symbol, self.int_b
)
return super().description()
@property
def is_valid(self) -> bool:
return True
@abstractmethod
def result(self) -> List[str]:
"""Get the result of the operation.
This could be calculated during initialization and stored as `_result`
and then returned, or calculated when the method is called.
"""
raise NotImplementedError
@classmethod
def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
"""Generator to yield pairs of inputs.
Combinations are first generated from all input values, and then
specific cases provided.
"""
if cls.arity == 1:
yield from ((a, "0") for a in cls.input_values)
elif cls.arity == 2:
if cls.unique_combinations_only:
yield from combination_pairs(cls.input_values)
else:
yield from (
(a, b)
for a in cls.input_values
for b in cls.input_values
)
else:
raise ValueError("Unsupported number of operands!")
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
if cls.input_style not in cls.input_styles:
raise ValueError("Unknown input style!")
if cls.arity not in cls.arities:
raise ValueError("Unsupported number of operands!")
if cls.input_style == "arch_split":
test_objects = (cls(a, b, bits_in_limb=bil)
for a, b in cls.get_value_pairs()
for bil in cls.limb_sizes)
special_cases = (cls(*args, bits_in_limb=bil) # type: ignore
for args in cls.input_cases
for bil in cls.limb_sizes)
else:
test_objects = (cls(a, b)
for a, b in cls.get_value_pairs())
special_cases = (cls(*args) for args in cls.input_cases)
yield from (valid_test_object.create_test_case()
for valid_test_object in filter(
lambda test_object: test_object.is_valid,
chain(test_objects, special_cases)
)
)
class ModulusRepresentation(enum.Enum):
"""Representation selector of a modulus."""
# Numerical values aligned with the type mbedtls_mpi_mod_rep_selector
INVALID = 0
MONTGOMERY = 2
OPT_RED = 3
def symbol(self) -> str:
"""The C symbol for this representation selector."""
return 'MBEDTLS_MPI_MOD_REP_' + self.name
@classmethod
def supported_representations(cls) -> List['ModulusRepresentation']:
"""Return all representations that are supported in positive test cases."""
return [cls.MONTGOMERY, cls.OPT_RED]
class ModOperationCommon(OperationCommon):
#pylint: disable=abstract-method
"""Target for bignum mod_raw test case generation."""
moduli = MODULI_DEFAULT # type: List[str]
montgomery_form_a = False
disallow_zero_a = False
def __init__(self, val_n: str, val_a: str, val_b: str = "0",
bits_in_limb: int = 64) -> None:
super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb)
self.val_n = val_n
# Setting the int versions here as opposed to making them @properties
# provides earlier/more robust input validation.
self.int_n = hex_to_int(val_n)
def to_montgomery(self, val: int) -> int:
return (val * self.r) % self.int_n
def from_montgomery(self, val: int) -> int:
return (val * self.r_inv) % self.int_n
def convert_from_canonical(self, canonical: int,
rep: ModulusRepresentation) -> int:
"""Convert values from canonical representation to the given representation."""
if rep is ModulusRepresentation.MONTGOMERY:
return self.to_montgomery(canonical)
elif rep is ModulusRepresentation.OPT_RED:
return canonical
else:
raise ValueError('Modulus representation not supported: {}'
.format(rep.name))
@property
def boundary(self) -> int:
return self.int_n
@property
def arg_a(self) -> str:
if self.montgomery_form_a:
value_a = self.to_montgomery(self.int_a)
else:
value_a = self.int_a
return self.format_arg('{:x}'.format(value_a))
@property
def arg_n(self) -> str:
return self.format_arg(self.val_n)
def format_arg(self, val: str) -> str:
return super().format_arg(val).zfill(self.hex_digits)
def arguments(self) -> List[str]:
return [quote_str(self.arg_n)] + super().arguments()
@property
def r(self) -> int: # pylint: disable=invalid-name
l = limbs_mpi(self.int_n, self.bits_in_limb)
return bound_mpi_limbs(l, self.bits_in_limb)
@property
def r_inv(self) -> int:
return invmod(self.r, self.int_n)
@property
def r2(self) -> int: # pylint: disable=invalid-name
return pow(self.r, 2)
@property
def is_valid(self) -> bool:
if self.int_a >= self.int_n:
return False
if self.disallow_zero_a and self.int_a == 0:
return False
if self.arity == 2 and self.int_b >= self.int_n:
return False
return True
def description(self) -> str:
"""Generate a description for the test case.
It uses the form A `symbol` B mod N, where symbol is used to represent
the operation.
"""
if not self.case_description:
return super().description() + " mod {:x}".format(self.int_n)
return super().description()
@classmethod
def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]:
if cls.arity == 1:
yield from ((n, a, "0") for a, n in cls.input_cases)
elif cls.arity == 2:
yield from ((n, a, b) for a, b, n in cls.input_cases)
else:
raise ValueError("Unsupported number of operands!")
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
if cls.input_style not in cls.input_styles:
raise ValueError("Unknown input style!")
if cls.arity not in cls.arities:
raise ValueError("Unsupported number of operands!")
if cls.input_style == "arch_split":
test_objects = (cls(n, a, b, bits_in_limb=bil)
for n in cls.moduli
for a, b in cls.get_value_pairs()
for bil in cls.limb_sizes)
special_cases = (cls(*args, bits_in_limb=bil)
for args in cls.input_cases_args()
for bil in cls.limb_sizes)
else:
test_objects = (cls(n, a, b)
for n in cls.moduli
for a, b in cls.get_value_pairs())
special_cases = (cls(*args) for args in cls.input_cases_args())
yield from (valid_test_object.create_test_case()
for valid_test_object in filter(
lambda test_object: test_object.is_valid,
chain(test_objects, special_cases)
))

View File

@ -1,896 +0,0 @@
"""Framework classes for generation of bignum core test cases."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import random
from typing import Dict, Iterator, List, Tuple
from . import test_case
from . import test_data_generation
from . import bignum_common
from .bignum_data import ADD_SUB_DATA
class BignumCoreTarget(test_data_generation.BaseTarget):
#pylint: disable=abstract-method, too-few-public-methods
"""Target for bignum core test case generation."""
target_basename = 'test_suite_bignum_core.generated'
class BignumCoreShiftR(BignumCoreTarget, test_data_generation.BaseTest):
"""Test cases for mbedtls_bignum_core_shift_r()."""
count = 0
test_function = "mpi_core_shift_r"
test_name = "Core shift right"
DATA = [
('00', '0', [0, 1, 8]),
('01', '1', [0, 1, 2, 8, 64]),
('dee5ca1a7ef10a75', '64-bit',
list(range(11)) + [31, 32, 33, 63, 64, 65, 71, 72]),
('002e7ab0070ad57001', '[leading 0 limb]',
[0, 1, 8, 63, 64]),
('a1055eb0bb1efa1150ff', '80-bit',
[0, 1, 8, 63, 64, 65, 72, 79, 80, 81, 88, 128, 129, 136]),
('020100000000000000001011121314151617', '138-bit',
[0, 1, 8, 9, 16, 72, 73, 136, 137, 138, 144]),
]
def __init__(self, input_hex: str, descr: str, count: int) -> None:
self.input_hex = input_hex
self.number_description = descr
self.shift_count = count
self.result = bignum_common.hex_to_int(input_hex) >> count
def arguments(self) -> List[str]:
return ['"{}"'.format(self.input_hex),
str(self.shift_count),
'"{:0{}x}"'.format(self.result, len(self.input_hex))]
def description(self) -> str:
return 'Core shift {} >> {}'.format(self.number_description,
self.shift_count)
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
for input_hex, descr, counts in cls.DATA:
for count in counts:
yield cls(input_hex, descr, count).create_test_case()
class BignumCoreShiftL(BignumCoreTarget, bignum_common.ModOperationCommon):
"""Test cases for mbedtls_bignum_core_shift_l()."""
BIT_SHIFT_VALUES = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a',
'1f', '20', '21', '3f', '40', '41', '47', '48', '4f',
'50', '51', '58', '80', '81', '88']
DATA = ["0", "1", "40", "dee5ca1a7ef10a75", "a1055eb0bb1efa1150ff",
"002e7ab0070ad57001", "020100000000000000001011121314151617",
"1946e2958a85d8863ae21f4904fcc49478412534ed53eaf321f63f2a222"
"7a3c63acbf50b6305595f90cfa8327f6db80d986fe96080bcbb5df1bdbe"
"9b74fb8dedf2bddb3f8215b54dffd66409323bcc473e45a8fe9d08e77a51"
"1698b5dad0416305db7fcf"]
arity = 1
test_function = "mpi_core_shift_l"
test_name = "Core shift(L)"
input_style = "arch_split"
symbol = "<<"
input_values = BIT_SHIFT_VALUES
moduli = DATA
@property
def val_n_max_limbs(self) -> int:
""" Return the limb count required to store the maximum number that can
fit in a the number of digits used by val_n """
m = bignum_common.hex_digits_max_int(self.val_n, self.bits_in_limb) - 1
return bignum_common.limbs_mpi(m, self.bits_in_limb)
def arguments(self) -> List[str]:
return [bignum_common.quote_str(self.val_n),
str(self.int_a)
] + self.result()
def description(self) -> str:
""" Format the output as:
#{count} {hex input} ({input bits} {limbs capacity}) << {bit shift} """
bits = "({} bits in {} limbs)".format(self.int_n.bit_length(), self.val_n_max_limbs)
return "{} #{} {} {} {} {}".format(self.test_name,
self.count,
self.val_n,
bits,
self.symbol,
self.int_a)
def format_result(self, res: int) -> str:
# Override to match zero-pading for leading digits between the output and input.
res_str = bignum_common.zfill_match(self.val_n, "{:x}".format(res))
return bignum_common.quote_str(res_str)
def result(self) -> List[str]:
result = (self.int_n << self.int_a)
# Calculate if there is space for shifting to the left(leading zero limbs)
mx = bignum_common.hex_digits_max_int(self.val_n, self.bits_in_limb)
# If there are empty limbs ahead, adjust the bitmask accordingly
result = result & (mx - 1)
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
class BignumCoreCTLookup(BignumCoreTarget, test_data_generation.BaseTest):
"""Test cases for mbedtls_mpi_core_ct_uint_table_lookup()."""
test_function = "mpi_core_ct_uint_table_lookup"
test_name = "Constant time MPI table lookup"
bitsizes = [
(32, "One limb"),
(192, "Smallest curve sized"),
(512, "Largest curve sized"),
(2048, "Small FF/RSA sized"),
(4096, "Large FF/RSA sized"),
]
window_sizes = [0, 1, 2, 3, 4, 5, 6]
def __init__(self,
bitsize: int, descr: str, window_size: int) -> None:
self.bitsize = bitsize
self.bitsize_description = descr
self.window_size = window_size
def arguments(self) -> List[str]:
return [str(self.bitsize), str(self.window_size)]
def description(self) -> str:
return '{} - {} MPI with {} bit window'.format(
BignumCoreCTLookup.test_name,
self.bitsize_description,
self.window_size
)
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
for bitsize, bitsize_description in cls.bitsizes:
for window_size in cls.window_sizes:
yield (cls(bitsize, bitsize_description, window_size)
.create_test_case())
class BignumCoreAddAndAddIf(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for bignum core add and add-if."""
count = 0
symbol = "+"
test_function = "mpi_core_add_and_add_if"
test_name = "mpi_core_add_and_add_if"
input_style = "arch_split"
input_values = ADD_SUB_DATA
unique_combinations_only = True
def result(self) -> List[str]:
result = self.int_a + self.int_b
carry, result = divmod(result, self.limb_boundary)
return [
self.format_result(result),
str(carry)
]
class BignumCoreSub(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for bignum core sub."""
count = 0
input_style = "arch_split"
symbol = "-"
test_function = "mpi_core_sub"
test_name = "mbedtls_mpi_core_sub"
input_values = ADD_SUB_DATA
def result(self) -> List[str]:
if self.int_a >= self.int_b:
result = self.int_a - self.int_b
carry = 0
else:
result = self.limb_boundary + self.int_a - self.int_b
carry = 1
return [
self.format_result(result),
str(carry)
]
class BignumCoreMLA(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for fixed-size multiply accumulate."""
count = 0
test_function = "mpi_core_mla"
test_name = "mbedtls_mpi_core_mla"
input_values = [
"0", "1", "fffe", "ffffffff", "100000000", "20000000000000",
"ffffffffffffffff", "10000000000000000", "1234567890abcdef0",
"fffffffffffffffffefefefefefefefe",
"100000000000000000000000000000000",
"1234567890abcdef01234567890abcdef0",
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0",
(
"4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f"
"34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf17"
"9298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38"
"edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec02507"
"6b12b"
)
] # type: List[str]
input_scalars = [
"0", "3", "fe", "ff", "ffff", "10000", "ffffffff", "100000000",
"7f7f7f7f7f7f7f7f", "8000000000000000", "fffffffffffffffe"
] # type: List[str]
def __init__(self, val_a: str, val_b: str, val_s: str) -> None:
super().__init__(val_a, val_b)
self.arg_scalar = val_s
self.int_scalar = bignum_common.hex_to_int(val_s)
if bignum_common.limbs_mpi(self.int_scalar, 32) > 1:
self.dependencies = ["MBEDTLS_HAVE_INT64"]
def arguments(self) -> List[str]:
return [
bignum_common.quote_str(self.arg_a),
bignum_common.quote_str(self.arg_b),
bignum_common.quote_str(self.arg_scalar)
] + self.result()
def description(self) -> str:
"""Override and add the additional scalar."""
if not self.case_description:
self.case_description = "0x{} + 0x{} * 0x{}".format(
self.arg_a, self.arg_b, self.arg_scalar
)
return super().description()
def result(self) -> List[str]:
result = self.int_a + (self.int_b * self.int_scalar)
bound_val = max(self.int_a, self.int_b)
bound_4 = bignum_common.bound_mpi(bound_val, 32)
bound_8 = bignum_common.bound_mpi(bound_val, 64)
carry_4, remainder_4 = divmod(result, bound_4)
carry_8, remainder_8 = divmod(result, bound_8)
return [
"\"{:x}\"".format(remainder_4),
"\"{:x}\"".format(carry_4),
"\"{:x}\"".format(remainder_8),
"\"{:x}\"".format(carry_8)
]
@classmethod
def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
"""Generator to yield pairs of inputs.
Combinations are first generated from all input values, and then
specific cases provided.
"""
yield from super().get_value_pairs()
yield from cls.input_cases
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
"""Override for additional scalar input."""
for a_value, b_value in cls.get_value_pairs():
for s_value in cls.input_scalars:
cur_op = cls(a_value, b_value, s_value)
yield cur_op.create_test_case()
class BignumCoreMul(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for bignum core multiplication."""
count = 0
input_style = "arch_split"
symbol = "*"
test_function = "mpi_core_mul"
test_name = "mbedtls_mpi_core_mul"
arity = 2
unique_combinations_only = True
def format_arg(self, val: str) -> str:
return val
def format_result(self, res: int) -> str:
res_str = '{:x}'.format(res)
a_limbs = bignum_common.limbs_mpi(self.int_a, self.bits_in_limb)
b_limbs = bignum_common.limbs_mpi(self.int_b, self.bits_in_limb)
hex_digits = bignum_common.hex_digits_for_limb(a_limbs + b_limbs, self.bits_in_limb)
return bignum_common.quote_str(self.format_arg(res_str).zfill(hex_digits))
def result(self) -> List[str]:
result = self.int_a * self.int_b
return [self.format_result(result)]
class BignumCoreMontmul(BignumCoreTarget, test_data_generation.BaseTest):
"""Test cases for Montgomery multiplication."""
count = 0
test_function = "mpi_core_montmul"
test_name = "mbedtls_mpi_core_montmul"
start_2_mpi4 = False
start_2_mpi8 = False
replay_test_cases = [
(2, 1, 1, 1, "19", "1", "1D"), (2, 1, 1, 1, "7", "1", "9"),
(2, 1, 1, 1, "4", "1", "9"),
(
12, 1, 6, 1, (
"3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402"
"B07CC8C7CE0B781C641A1EA8DB2F4343"
), "1", (
"66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A5"
"94B6BED27A168D31D4A52F88925AA8F5"
)
), (
8, 1, 4, 1,
"1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211",
"1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561"
), (
22, 1, 11, 1, (
"7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB"
"82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB"
"23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E"
), "1", (
"284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC558547"
"25B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500"
"A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123"
)
)
] # type: List[Tuple[int, int, int, int, str, str, str]]
random_test_cases = [
("2", "2", "3", ""), ("1", "2", "3", ""), ("2", "1", "3", ""),
("6", "5", "7", ""), ("3", "4", "7", ""), ("1", "6", "7", ""), ("5", "6", "7", ""),
("3", "4", "B", ""), ("7", "4", "B", ""), ("9", "7", "B", ""), ("2", "a", "B", ""),
("25", "16", "29", "(0x29 is prime)"), ("8", "28", "29", ""),
("18", "21", "29", ""), ("15", "f", "29", ""),
("e2", "ea", "FF", ""), ("43", "72", "FF", ""),
("d8", "70", "FF", ""), ("3c", "7c", "FF", ""),
("99", "b9", "101", "(0x101 is prime)"), ("65", "b2", "101", ""),
("81", "32", "101", ""), ("51", "dd", "101", ""),
("d5", "143", "38B", "(0x38B is prime)"), ("3d", "387", "38B", ""),
("160", "2e5", "38B", ""), ("10f", "137", "38B", ""),
("7dac", "25a", "8003", "(0x8003 is prime)"), ("6f1c", "3286", "8003", ""),
("59ed", "2f3f", "8003", ""), ("6893", "736d", "8003", ""),
("d199", "2832", "10001", "(0x10001 is prime)"), ("c3b2", "3e5b", "10001", ""),
("abe4", "214e", "10001", ""), ("4360", "a05d", "10001", ""),
("3f5a1", "165b2", "7F7F7", ""), ("3bd29", "37863", "7F7F7", ""),
("60c47", "64819", "7F7F7", ""), ("16584", "12c49", "7F7F7", ""),
("1ff03f", "610347", "800009", "(0x800009 is prime)"), ("340fd5", "19812e", "800009", ""),
("3fe2e8", "4d0dc7", "800009", ""), ("40356", "e6392", "800009", ""),
("dd8a1d", "266c0e", "100002B", "(0x100002B is prime)"),
("3fa1cb", "847fd6", "100002B", ""), ("5f439d", "5c3196", "100002B", ""),
("18d645", "f72dc6", "100002B", ""),
("20051ad", "37def6e", "37EEE9D", "(0x37EEE9D is prime)"),
("2ec140b", "3580dbf", "37EEE9D", ""), ("1d91b46", "190d4fc", "37EEE9D", ""),
("34e488d", "1224d24", "37EEE9D", ""),
("2a4fe2cb", "263466a9", "8000000B", "(0x8000000B is prime)"),
("5643fe94", "29a1aefa", "8000000B", ""), ("29633513", "7b007ac4", "8000000B", ""),
("2439cef5", "5c9d5a47", "8000000B", ""),
("4de3cfaa", "50dea178", "8CD626B9", "(0x8CD626B9 is prime)"),
("b8b8563", "10dbbbac", "8CD626B9", ""), ("4e8a6151", "5574ec19", "8CD626B9", ""),
("69224878", "309cfc23", "8CD626B9", ""),
("fb6f7fb6", "afb05423", "10000000F", "(0x10000000F is prime)"),
("8391a243", "26034dcd", "10000000F", ""), ("d26b98c", "14b2d6aa", "10000000F", ""),
("6b9f1371", "a21daf1d", "10000000F", ""),
(
"9f49435ad", "c8264ade8", "174876E7E9",
"0x174876E7E9 is prime (dec) 99999999977"
),
("c402da434", "1fb427acf", "174876E7E9", ""),
("f6ebc2bb1", "1096d39f2a", "174876E7E9", ""),
("153b7f7b6b", "878fda8ff", "174876E7E9", ""),
("2c1adbb8d6", "4384d2d3c6", "8000000017", "(0x8000000017 is prime)"),
("2e4f9cf5fb", "794f3443d9", "8000000017", ""),
("149e495582", "3802b8f7b7", "8000000017", ""),
("7b9d49df82", "69c68a442a", "8000000017", ""),
("683a134600", "6dd80ea9f6", "864CB9076D", "(0x864CB9076D is prime)"),
("13a870ff0d", "59b099694a", "864CB9076D", ""),
("37d06b0e63", "4d2147e46f", "864CB9076D", ""),
("661714f8f4", "22e55df507", "864CB9076D", ""),
("2f0a96363", "52693307b4", "F7F7F7F7F7", ""),
("3c85078e64", "f2275ecb6d", "F7F7F7F7F7", ""),
("352dae68d1", "707775b4c6", "F7F7F7F7F7", ""),
("37ae0f3e0b", "912113040f", "F7F7F7F7F7", ""),
("6dada15e31", "f58ed9eff7", "1000000000F", "(0x1000000000F is prime)"),
("69627a7c89", "cfb5ebd13d", "1000000000F", ""),
("a5e1ad239b", "afc030c731", "1000000000F", ""),
("f1cc45f4c5", "c64ad607c8", "1000000000F", ""),
("2ebad87d2e31", "4c72d90bca78", "800000000005", "(0x800000000005 is prime)"),
("a30b3cc50d", "29ac4fe59490", "800000000005", ""),
("33674e9647b4", "5ec7ee7e72d3", "800000000005", ""),
("3d956f474f61", "74070040257d", "800000000005", ""),
("48348e3717d6", "43fcb4399571", "800795D9BA47", "(0x800795D9BA47 is prime)"),
("5234c03cc99b", "2f3cccb87803", "800795D9BA47", ""),
("3ed13db194ab", "44b8f4ba7030", "800795D9BA47", ""),
("1c11e843bfdb", "95bd1b47b08", "800795D9BA47", ""),
("a81d11cb81fd", "1e5753a3f33d", "1000000000015", "(0x1000000000015 is prime)"),
("688c4db99232", "36fc0cf7ed", "1000000000015", ""),
("f0720cc07e07", "fc76140ed903", "1000000000015", ""),
("2ec61f8d17d1", "d270c85e36d2", "1000000000015", ""),
(
"6a24cd3ab63820", "ed4aad55e5e348", "100000000000051",
"(0x100000000000051 is prime)"
),
("e680c160d3b248", "31e0d8840ed510", "100000000000051", ""),
("a80637e9aebc38", "bb81decc4e1738", "100000000000051", ""),
("9afa5a59e9d630", "be9e65a6d42938", "100000000000051", ""),
("ab5e104eeb71c000", "2cffbd639e9fea00", "ABCDEF0123456789", ""),
("197b867547f68a00", "44b796cf94654800", "ABCDEF0123456789", ""),
("329f9483a04f2c00", "9892f76961d0f000", "ABCDEF0123456789", ""),
("4a2e12dfb4545000", "1aa3e89a69794500", "ABCDEF0123456789", ""),
(
"8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "25A55A46E5DA99C71C7",
"0x25A55A46E5DA99C71C7 is the 3rd repunit prime(dec) 11111111111111111111111"
),
("1b8d960ea277e3f5500", "14418aa980e37dd000", "25A55A46E5DA99C71C7", ""),
("7314524977e8075980", "8172fa45618ccd0d80", "25A55A46E5DA99C71C7", ""),
("ca14f031769be63580", "147a2f3cf2964ca9400", "25A55A46E5DA99C71C7", ""),
(
"18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000",
"314DC643FB763F2B8C0E2DE00879",
"0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3"
),
(
"a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000",
"314DC643FB763F2B8C0E2DE00879", ""
),
(
"1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000",
"314DC643FB763F2B8C0E2DE00879", ""
),
(
"e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000",
"314DC643FB763F2B8C0E2DE00879", ""
),
(
"1ea3ade786a095d978d387f30df9f20000000",
"127c448575f04af5a367a7be06c7da0000000",
"47BF19662275FA2F6845C74942ED1D852E521",
"0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4"
),
(
"16e15b0ca82764e72e38357b1f10a20000000",
"43e2355d8514bbe22b0838fdc3983a0000000",
"47BF19662275FA2F6845C74942ED1D852E521", ""
),
(
"be39332529d93f25c3d116c004c620000000",
"5cccec42370a0a2c89c6772da801a0000000",
"47BF19662275FA2F6845C74942ED1D852E521", ""
),
(
"ecaa468d90de0eeda474d39b3e1fc0000000",
"1e714554018de6dc0fe576bfd3b5660000000",
"47BF19662275FA2F6845C74942ED1D852E521", ""
),
(
"32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000",
"8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000",
"97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931",
(
"0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931"
" is (dec) 99999999977^6"
)
),
(
"29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000",
"6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000",
"97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", ""
),
(
"6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000",
"7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000",
"97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", ""
),
(
"62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000",
"530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000",
"97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", ""
),
(
"a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000",
"75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000",
"DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499",
(
"0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499"
" is (dec) 99999999977^7"
)
),
(
"bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000",
"397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000",
"DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", ""
),
(
"6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000",
"ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000",
"DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", ""
),
(
"3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000",
"925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000",
"DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", ""
),
(
"1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000",
"51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000",
"141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41",
(
"0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146"
"380E41 is 99999999977^8"
)
),
(
"1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000",
"520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000",
"141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41",
""
),
(
"57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000",
"41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000",
"141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41",
""
),
(
"d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000",
"6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000",
"141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41",
""
),
(
(
"2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbf"
"a1e6000000000000000000000000"
), (
"1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a0"
"0315800000000000000000000000"
), (
"2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC90"
"2713E40F51E3B3C214EDFABC451"
), (
"0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC"
"902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10"
)
),
(
(
"c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de47"
"40800000000000000000000000"
), (
"c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f709603419"
"3c800000000000000000000000"
), (
"2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC90"
"2713E40F51E3B3C214EDFABC451"
), ""
),
(
(
"19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba"
"5ee800000000000000000000000"
), (
"1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c33"
"65b800000000000000000000000"
), (
"2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC90"
"2713E40F51E3B3C214EDFABC451"
), ""
),
(
(
"1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd"
"01a800000000000000000000000"
), (
"54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b"
"8b000000000000000000000000"
), (
"2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC90"
"2713E40F51E3B3C214EDFABC451"
), ""
),
(
(
"544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b23089917843"
"06d48f78686115ee19e25400000000000000000000000000000000"
), (
"677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0"
"a0148d1625745e9c4c827300000000000000000000000000000000"
), (
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA1"
"1DABD6E6144BEF37C6800000000000000000000000000000000051"
), (
"0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBF"
"A11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime,"
" (dec) 10^143 + 3^4"
)
),
(
(
"76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865c"
"b6464174795d07e30015b80000000000000000000000000000000"
), (
"6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c7"
"9a52af190abd51739009a900000000000000000000000000000000"
), (
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA1"
"1DABD6E6144BEF37C6800000000000000000000000000000000051"
), ""
),
(
(
"6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd6"
"3d1d8cfbc1d498162786ba00000000000000000000000000000000"
), (
"1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb"
"4c2f6d0667f9467fdcf33400000000000000000000000000000000"
), (
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA1"
"1DABD6E6144BEF37C6800000000000000000000000000000000051"
), ""
),
(
(
"7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5"
"a9f0ad04facb69aa3715f00000000000000000000000000000000"
), (
"764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d"
"799020e244a835a145ec9800000000000000000000000000000000"
), (
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA1"
"1DABD6E6144BEF37C6800000000000000000000000000000000051"
), ""
)
] # type: List[Tuple[str, str, str, str]]
def __init__(
self, val_a: str, val_b: str, val_n: str, case_description: str = ""
):
self.case_description = case_description
self.arg_a = val_a
self.int_a = bignum_common.hex_to_int(val_a)
self.arg_b = val_b
self.int_b = bignum_common.hex_to_int(val_b)
self.arg_n = val_n
self.int_n = bignum_common.hex_to_int(val_n)
limbs_a4 = bignum_common.limbs_mpi(self.int_a, 32)
limbs_a8 = bignum_common.limbs_mpi(self.int_a, 64)
self.limbs_b4 = bignum_common.limbs_mpi(self.int_b, 32)
self.limbs_b8 = bignum_common.limbs_mpi(self.int_b, 64)
self.limbs_an4 = bignum_common.limbs_mpi(self.int_n, 32)
self.limbs_an8 = bignum_common.limbs_mpi(self.int_n, 64)
if limbs_a4 > self.limbs_an4 or limbs_a8 > self.limbs_an8:
raise Exception("Limbs of input A ({}) exceeds N ({})".format(
self.arg_a, self.arg_n
))
def arguments(self) -> List[str]:
return [
str(self.limbs_an4), str(self.limbs_b4),
str(self.limbs_an8), str(self.limbs_b8),
bignum_common.quote_str(self.arg_a),
bignum_common.quote_str(self.arg_b),
bignum_common.quote_str(self.arg_n)
] + self.result()
def description(self) -> str:
if self.case_description != "replay":
if not self.start_2_mpi4 and self.limbs_an4 > 1:
tmp = "(start of 2-MPI 4-byte bignums) "
self.__class__.start_2_mpi4 = True
elif not self.start_2_mpi8 and self.limbs_an8 > 1:
tmp = "(start of 2-MPI 8-byte bignums) "
self.__class__.start_2_mpi8 = True
else:
tmp = "(gen) "
self.case_description = tmp + self.case_description
return super().description()
def result(self) -> List[str]:
"""Get the result of the operation."""
r4 = bignum_common.bound_mpi_limbs(self.limbs_an4, 32)
i4 = bignum_common.invmod(r4, self.int_n)
x4 = self.int_a * self.int_b * i4
x4 = x4 % self.int_n
r8 = bignum_common.bound_mpi_limbs(self.limbs_an8, 64)
i8 = bignum_common.invmod(r8, self.int_n)
x8 = self.int_a * self.int_b * i8
x8 = x8 % self.int_n
return [
"\"{:x}\"".format(x4),
"\"{:x}\"".format(x8)
]
def set_limbs(
self, limbs_an4: int, limbs_b4: int, limbs_an8: int, limbs_b8: int
) -> None:
"""Set number of limbs for each input.
Replaces default values set during initialization.
"""
self.limbs_an4 = limbs_an4
self.limbs_b4 = limbs_b4
self.limbs_an8 = limbs_an8
self.limbs_b8 = limbs_b8
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
"""Generate replay and randomly generated test cases."""
# Test cases which replay captured invocations during unit test runs.
for limbs_an4, limbs_b4, limbs_an8, limbs_b8, a, b, n in cls.replay_test_cases:
cur_op = cls(a, b, n, case_description="replay")
cur_op.set_limbs(limbs_an4, limbs_b4, limbs_an8, limbs_b8)
yield cur_op.create_test_case()
# Random test cases can be generated using mpi_modmul_case_generate()
# Uses a mixture of primes and odd numbers as N, with four randomly
# generated cases for each N.
for a, b, n, description in cls.random_test_cases:
cur_op = cls(a, b, n, case_description=description)
yield cur_op.create_test_case()
def mpi_modmul_case_generate() -> None:
"""Generate valid inputs for montmul tests using moduli.
For each modulus, generates random values for A and B and simple descriptions
for the test case.
"""
moduli = [
("3", ""), ("7", ""), ("B", ""), ("29", ""), ("FF", ""),
("101", ""), ("38B", ""), ("8003", ""), ("10001", ""),
("7F7F7", ""), ("800009", ""), ("100002B", ""), ("37EEE9D", ""),
("8000000B", ""), ("8CD626B9", ""), ("10000000F", ""),
("174876E7E9", "is prime (dec) 99999999977"),
("8000000017", ""), ("864CB9076D", ""), ("F7F7F7F7F7", ""),
("1000000000F", ""), ("800000000005", ""), ("800795D9BA47", ""),
("1000000000015", ""), ("100000000000051", ""), ("ABCDEF0123456789", ""),
(
"25A55A46E5DA99C71C7",
"is the 3rd repunit prime (dec) 11111111111111111111111"
),
("314DC643FB763F2B8C0E2DE00879", "is (dec)99999999977^3"),
("47BF19662275FA2F6845C74942ED1D852E521", "is (dec) 99999999977^4"),
(
"97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931",
"is (dec) 99999999977^6"
),
(
"DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499",
"is (dec) 99999999977^7"
),
(
"141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41",
"is (dec) 99999999977^8"
),
(
(
"2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E283"
"3EC902713E40F51E3B3C214EDFABC451"
),
"is (dec) 99999999977^10"
),
(
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11"
"DABD6E6144BEF37C6800000000000000000000000000000000051",
"is prime, (dec) 10^143 + 3^4"
)
] # type: List[Tuple[str, str]]
primes = [
"3", "7", "B", "29", "101", "38B", "8003", "10001", "800009",
"100002B", "37EEE9D", "8000000B", "8CD626B9",
# From here they require > 1 4-byte MPI
"10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F",
"800000000005", "800795D9BA47", "1000000000015", "100000000000051",
# From here they require > 1 8-byte MPI
"25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal
# 10^143 + 3^4: (which is prime)
# 100000000000000000000000000000000000000000000000000000000000000000000000000000
# 000000000000000000000000000000000000000000000000000000000000000081
(
"8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11"
"DABD6E6144BEF37C6800000000000000000000000000000000051"
)
] # type: List[str]
generated_inputs = []
for mod, description in moduli:
n = bignum_common.hex_to_int(mod)
mod_read = "{:x}".format(n)
case_count = 3 if n < 5 else 4
cases = {} # type: Dict[int, int]
i = 0
while i < case_count:
a = random.randint(1, n)
b = random.randint(1, n)
if cases.get(a) == b:
continue
cases[a] = b
if description:
out_description = "0x{} {}".format(mod_read, description)
elif i == 0 and len(mod) > 1 and mod in primes:
out_description = "(0x{} is prime)"
else:
out_description = ""
generated_inputs.append(
("{:x}".format(a), "{:x}".format(b), mod, out_description)
)
i += 1
print(generated_inputs)
class BignumCoreExpMod(BignumCoreTarget, bignum_common.ModOperationCommon):
"""Test cases for bignum core exponentiation."""
symbol = "^"
test_function = "mpi_core_exp_mod"
test_name = "Core modular exponentiation (Mongtomery form only)"
input_style = "fixed"
montgomery_form_a = True
def result(self) -> List[str]:
# Result has to be given in Montgomery form too
result = pow(self.int_a, self.int_b, self.int_n)
mont_result = self.to_montgomery(result)
return [self.format_result(mont_result)]
@property
def is_valid(self) -> bool:
# The base needs to be canonical, but the exponent can be larger than
# the modulus (see for example exponent blinding)
return bool(self.int_a < self.int_n)
class BignumCoreSubInt(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for bignum core sub int."""
count = 0
symbol = "-"
test_function = "mpi_core_sub_int"
test_name = "mpi_core_sub_int"
input_style = "arch_split"
@property
def is_valid(self) -> bool:
# This is "sub int", so b is only one limb
if bignum_common.limbs_mpi(self.int_b, self.bits_in_limb) > 1:
return False
return True
# Overriding because we don't want leading zeros on b
@property
def arg_b(self) -> str:
return self.val_b
def result(self) -> List[str]:
result = self.int_a - self.int_b
borrow, result = divmod(result, self.limb_boundary)
# Borrow will be -1 if non-zero, but we want it to be 1 in the test data
return [
self.format_result(result),
str(-borrow)
]
class BignumCoreZeroCheckCT(BignumCoreTarget, bignum_common.OperationCommon):
"""Test cases for bignum core zero check (constant flow)."""
count = 0
symbol = "== 0"
test_function = "mpi_core_check_zero_ct"
test_name = "mpi_core_check_zero_ct"
input_style = "variable"
arity = 1
suffix = True
def result(self) -> List[str]:
result = 1 if self.int_a == 0 else 0
return [str(result)]

View File

@ -1,159 +0,0 @@
"""Base values and datasets for bignum generated tests and helper functions that
produced them."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import random
# Functions calling these were used to produce test data and are here only for
# reproducibility, they are not used by the test generation framework/classes
try:
from Cryptodome.Util.number import isPrime, getPrime #type: ignore #pylint: disable=import-error
except ImportError:
pass
# Generated by bignum_common.gen_safe_prime(192,1)
SAFE_PRIME_192_BIT_SEED_1 = "d1c127a667786703830500038ebaef20e5a3e2dc378fb75b"
# First number generated by random.getrandbits(192) - seed(2,2), not a prime
RANDOM_192_BIT_SEED_2_NO1 = "177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"
# Second number generated by random.getrandbits(192) - seed(2,2), not a prime
RANDOM_192_BIT_SEED_2_NO2 = "cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
# Third number generated by random.getrandbits(192) - seed(2,2), not a prime
RANDOM_192_BIT_SEED_2_NO3 = "3653f8dd9b1f282e4067c3584ee207f8da94e3e8ab73738f"
# Fourth number generated by random.getrandbits(192) - seed(2,2), not a prime
RANDOM_192_BIT_SEED_2_NO4 = "ffed9235288bc781ae66267594c9c9500925e4749b575bd1"
# Ninth number generated by random.getrandbits(192) - seed(2,2), not a prime
RANDOM_192_BIT_SEED_2_NO9 = "2a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"
# Generated by bignum_common.gen_safe_prime(1024,3)
SAFE_PRIME_1024_BIT_SEED_3 = ("c93ba7ec74d96f411ba008bdb78e63ff11bb5df46a51e16b"
"2c9d156f8e4e18abf5e052cb01f47d0d1925a77f60991577"
"e128fb6f52f34a27950a594baadd3d8057abeb222cf3cca9"
"62db16abf79f2ada5bd29ab2f51244bf295eff9f6aaba130"
"2efc449b128be75eeaca04bc3c1a155d11d14e8be32a2c82"
"87b3996cf6ad5223")
# First number generated by random.getrandbits(1024) - seed(4,2), not a prime
RANDOM_1024_BIT_SEED_4_NO1 = ("6905269ed6f0b09f165c8ce36e2f24b43000de01b2ed40ed"
"3addccb2c33be0ac79d679346d4ac7a5c3902b38963dc6e8"
"534f45738d048ec0f1099c6c3e1b258fd724452ccea71ff4"
"a14876aeaff1a098ca5996666ceab360512bd13110722311"
"710cf5327ac435a7a97c643656412a9b8a1abcd1a6916c74"
"da4f9fc3c6da5d7")
# Second number generated by random.getrandbits(1024) - seed(4,2), not a prime
RANDOM_1024_BIT_SEED_4_NO2 = ("f1cfd99216df648647adec26793d0e453f5082492d83a823"
"3fb62d2c81862fc9634f806fabf4a07c566002249b191bf4"
"d8441b5616332aca5f552773e14b0190d93936e1daca3c06"
"f5ff0c03bb5d7385de08caa1a08179104a25e4664f5253a0"
"2a3187853184ff27459142deccea264542a00403ce80c4b0"
"a4042bb3d4341aad")
# Third number generated by random.getrandbits(1024) - seed(4,2), not a prime
RANDOM_1024_BIT_SEED_4_NO3 = ("14c15c910b11ad28cc21ce88d0060cc54278c2614e1bcb38"
"3bb4a570294c4ea3738d243a6e58d5ca49c7b59b995253fd"
"6c79a3de69f85e3131f3b9238224b122c3e4a892d9196ada"
"4fcfa583e1df8af9b474c7e89286a1754abcb06ae8abb93f"
"01d89a024cdce7a6d7288ff68c320f89f1347e0cdd905ecf"
"d160c5d0ef412ed6")
# Fourth number generated by random.getrandbits(1024) - seed(4,2), not a prime
RANDOM_1024_BIT_SEED_4_NO4 = ("32decd6b8efbc170a26a25c852175b7a96b98b5fbf37a2be"
"6f98bca35b17b9662f0733c846bbe9e870ef55b1a1f65507"
"a2909cb633e238b4e9dd38b869ace91311021c9e32111ac1"
"ac7cc4a4ff4dab102522d53857c49391b36cc9aa78a330a1"
"a5e333cb88dcf94384d4cd1f47ca7883ff5a52f1a05885ac"
"7671863c0bdbc23a")
# Fifth number generated by random.getrandbits(1024) - seed(4,2), not a prime
RANDOM_1024_BIT_SEED_4_NO5 = ("53be4721f5b9e1f5acdac615bc20f6264922b9ccf469aef8"
"f6e7d078e55b85dd1525f363b281b8885b69dc230af5ac87"
"0692b534758240df4a7a03052d733dcdef40af2e54c0ce68"
"1f44ebd13cc75f3edcb285f89d8cf4d4950b16ffc3e1ac3b"
"4708d9893a973000b54a23020fc5b043d6e4a51519d9c9cc"
"52d32377e78131c1")
# Adding 192 bit and 1024 bit numbers because these are the shortest required
# for ECC and RSA respectively.
INPUTS_DEFAULT = [
"0", "1", # corner cases
"2", "3", # small primes
"4", # non-prime even
"38", # small random
SAFE_PRIME_192_BIT_SEED_1, # prime
RANDOM_192_BIT_SEED_2_NO1, # not a prime
RANDOM_192_BIT_SEED_2_NO2, # not a prime
SAFE_PRIME_1024_BIT_SEED_3, # prime
RANDOM_1024_BIT_SEED_4_NO1, # not a prime
RANDOM_1024_BIT_SEED_4_NO3, # not a prime
RANDOM_1024_BIT_SEED_4_NO2, # largest (not a prime)
]
ADD_SUB_DATA = [
"0", "1", "3", "f", "fe", "ff", "100", "ff00",
"fffe", "ffff", "10000", # 2^16 - 1, 2^16, 2^16 + 1
"fffffffe", "ffffffff", "100000000", # 2^32 - 1, 2^32, 2^32 + 1
"1f7f7f7f7f7f7f",
"8000000000000000", "fefefefefefefefe",
"fffffffffffffffe", "ffffffffffffffff", "10000000000000000", # 2^64 - 1, 2^64, 2^64 + 1
"1234567890abcdef0",
"fffffffffffffffffffffffe",
"ffffffffffffffffffffffff",
"1000000000000000000000000",
"fffffffffffffffffefefefefefefefe",
"fffffffffffffffffffffffffffffffe",
"ffffffffffffffffffffffffffffffff",
"100000000000000000000000000000000",
"1234567890abcdef01234567890abcdef0",
"fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"10000000000000000000000000000000000000000000000000000000000000000",
"1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0",
]
# Only odd moduli are present as in the new bignum code only odd moduli are
# supported for now.
MODULI_DEFAULT = [
"53", # safe prime
"45", # non-prime
SAFE_PRIME_192_BIT_SEED_1, # safe prime
RANDOM_192_BIT_SEED_2_NO4, # not a prime
SAFE_PRIME_1024_BIT_SEED_3, # safe prime
RANDOM_1024_BIT_SEED_4_NO5, # not a prime
]
# Some functions, e.g. mbedtls_mpi_mod_raw_inv_prime(), only support prime moduli.
ONLY_PRIME_MODULI = [
"53", # safe prime
"8ac72304057392b5", # 9999999997777777333 (longer, not safe, prime)
# The next prime has a different R in Montgomery form depending on
# whether 32- or 64-bit MPIs are used.
"152d02c7e14af67fe0bf", # 99999999999999999991999
SAFE_PRIME_192_BIT_SEED_1, # safe prime
SAFE_PRIME_1024_BIT_SEED_3, # safe prime
]
def __gen_safe_prime(bits, seed):
'''
Generate a safe prime.
This function is intended for generating constants offline and shouldn't be
used in test generation classes.
Requires pycryptodomex for getPrime and isPrime and python 3.9 or later for
randbytes.
'''
rng = random.Random()
# We want reproducibility across python versions
rng.seed(seed, version=2)
while True:
prime = 2*getPrime(bits-1, rng.randbytes)+1 #pylint: disable=no-member
if isPrime(prime, 1e-30):
return prime

View File

@ -1,102 +0,0 @@
"""Framework classes for generation of bignum mod test cases."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
from typing import Dict, List
from . import test_data_generation
from . import bignum_common
from .bignum_data import ONLY_PRIME_MODULI
class BignumModTarget(test_data_generation.BaseTarget):
#pylint: disable=abstract-method, too-few-public-methods
"""Target for bignum mod test case generation."""
target_basename = 'test_suite_bignum_mod.generated'
class BignumModMul(bignum_common.ModOperationCommon,
BignumModTarget):
# pylint:disable=duplicate-code
"""Test cases for bignum mpi_mod_mul()."""
symbol = "*"
test_function = "mpi_mod_mul"
test_name = "mbedtls_mpi_mod_mul"
input_style = "arch_split"
arity = 2
def arguments(self) -> List[str]:
return [self.format_result(self.to_montgomery(self.int_a)),
self.format_result(self.to_montgomery(self.int_b)),
bignum_common.quote_str(self.arg_n)
] + self.result()
def result(self) -> List[str]:
result = (self.int_a * self.int_b) % self.int_n
return [self.format_result(self.to_montgomery(result))]
class BignumModSub(bignum_common.ModOperationCommon, BignumModTarget):
"""Test cases for bignum mpi_mod_sub()."""
symbol = "-"
test_function = "mpi_mod_sub"
test_name = "mbedtls_mpi_mod_sub"
input_style = "fixed"
arity = 2
def result(self) -> List[str]:
result = (self.int_a - self.int_b) % self.int_n
# To make negative tests easier, append 0 for success to the
# generated cases
return [self.format_result(result), "0"]
class BignumModInvNonMont(bignum_common.ModOperationCommon, BignumModTarget):
"""Test cases for bignum mpi_mod_inv() - not in Montgomery form."""
moduli = ONLY_PRIME_MODULI # for now only prime moduli supported
symbol = "^ -1"
test_function = "mpi_mod_inv_non_mont"
test_name = "mbedtls_mpi_mod_inv non-Mont. form"
input_style = "fixed"
arity = 1
suffix = True
disallow_zero_a = True
def result(self) -> List[str]:
result = bignum_common.invmod_positive(self.int_a, self.int_n)
# To make negative tests easier, append 0 for success to the
# generated cases
return [self.format_result(result), "0"]
class BignumModInvMont(bignum_common.ModOperationCommon, BignumModTarget):
"""Test cases for bignum mpi_mod_inv() - Montgomery form."""
moduli = ONLY_PRIME_MODULI # for now only prime moduli supported
symbol = "^ -1"
test_function = "mpi_mod_inv_mont"
test_name = "mbedtls_mpi_mod_inv Mont. form"
input_style = "arch_split" # Mont. form requires arch_split
arity = 1
suffix = True
disallow_zero_a = True
montgomery_form_a = True
def result(self) -> List[str]:
result = bignum_common.invmod_positive(self.int_a, self.int_n)
mont_result = self.to_montgomery(result)
# To make negative tests easier, append 0 for success to the
# generated cases
return [self.format_result(mont_result), "0"]
class BignumModAdd(bignum_common.ModOperationCommon, BignumModTarget):
"""Test cases for bignum mpi_mod_add()."""
count = 0
symbol = "+"
test_function = "mpi_mod_add"
test_name = "mbedtls_mpi_mod_add"
input_style = "fixed"
def result(self) -> List[str]:
result = (self.int_a + self.int_b) % self.int_n
# To make negative tests easier, append "0" for success to the
# generated cases
return [self.format_result(result), "0"]

View File

@ -1,242 +0,0 @@
"""Framework classes for generation of bignum mod_raw test cases."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
from typing import Iterator, List
from . import test_case
from . import test_data_generation
from . import bignum_common
from .bignum_data import ONLY_PRIME_MODULI
class BignumModRawTarget(test_data_generation.BaseTarget):
#pylint: disable=abstract-method, too-few-public-methods
"""Target for bignum mod_raw test case generation."""
target_basename = 'test_suite_bignum_mod_raw.generated'
class BignumModRawSub(bignum_common.ModOperationCommon,
BignumModRawTarget):
"""Test cases for bignum mpi_mod_raw_sub()."""
symbol = "-"
test_function = "mpi_mod_raw_sub"
test_name = "mbedtls_mpi_mod_raw_sub"
input_style = "fixed"
arity = 2
def arguments(self) -> List[str]:
return [bignum_common.quote_str(n) for n in [self.arg_a,
self.arg_b,
self.arg_n]
] + self.result()
def result(self) -> List[str]:
result = (self.int_a - self.int_b) % self.int_n
return [self.format_result(result)]
class BignumModRawFixQuasiReduction(bignum_common.ModOperationCommon,
BignumModRawTarget):
"""Test cases for ecp quasi_reduction()."""
symbol = "-"
test_function = "mpi_mod_raw_fix_quasi_reduction"
test_name = "fix_quasi_reduction"
input_style = "fixed"
arity = 1
# Extend the default values with n < x < 2n
input_values = bignum_common.ModOperationCommon.input_values + [
"73",
# First number generated by random.getrandbits(1024) - seed(3,2)
"ea7b5bf55eb561a4216363698b529b4a97b750923ceb3ffd",
# First number generated by random.getrandbits(1024) - seed(1,2)
("cd447e35b8b6d8fe442e3d437204e52db2221a58008a05a6c4647159c324c985"
"9b810e766ec9d28663ca828dd5f4b3b2e4b06ce60741c7a87ce42c8218072e8c"
"35bf992dc9e9c616612e7696a6cecc1b78e510617311d8a3c2ce6f447ed4d57b"
"1e2feb89414c343c1027c4d1c386bbc4cd613e30d8f16adf91b7584a2265b1f5")
] # type: List[str]
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return bool(self.int_a < 2 * self.int_n)
class BignumModRawMul(bignum_common.ModOperationCommon,
BignumModRawTarget):
"""Test cases for bignum mpi_mod_raw_mul()."""
symbol = "*"
test_function = "mpi_mod_raw_mul"
test_name = "mbedtls_mpi_mod_raw_mul"
input_style = "arch_split"
arity = 2
def arguments(self) -> List[str]:
return [self.format_result(self.to_montgomery(self.int_a)),
self.format_result(self.to_montgomery(self.int_b)),
bignum_common.quote_str(self.arg_n)
] + self.result()
def result(self) -> List[str]:
result = (self.int_a * self.int_b) % self.int_n
return [self.format_result(self.to_montgomery(result))]
class BignumModRawInvPrime(bignum_common.ModOperationCommon,
BignumModRawTarget):
"""Test cases for bignum mpi_mod_raw_inv_prime()."""
moduli = ONLY_PRIME_MODULI
symbol = "^ -1"
test_function = "mpi_mod_raw_inv_prime"
test_name = "mbedtls_mpi_mod_raw_inv_prime (Montgomery form only)"
input_style = "arch_split"
arity = 1
suffix = True
montgomery_form_a = True
disallow_zero_a = True
def result(self) -> List[str]:
result = bignum_common.invmod_positive(self.int_a, self.int_n)
mont_result = self.to_montgomery(result)
return [self.format_result(mont_result)]
class BignumModRawAdd(bignum_common.ModOperationCommon,
BignumModRawTarget):
"""Test cases for bignum mpi_mod_raw_add()."""
symbol = "+"
test_function = "mpi_mod_raw_add"
test_name = "mbedtls_mpi_mod_raw_add"
input_style = "fixed"
arity = 2
def result(self) -> List[str]:
result = (self.int_a + self.int_b) % self.int_n
return [self.format_result(result)]
class BignumModRawConvertRep(bignum_common.ModOperationCommon,
BignumModRawTarget):
# This is an abstract class, it's ok to have unimplemented methods.
#pylint: disable=abstract-method
"""Test cases for representation conversion."""
symbol = ""
input_style = "arch_split"
arity = 1
rep = bignum_common.ModulusRepresentation.INVALID
def set_representation(self, r: bignum_common.ModulusRepresentation) -> None:
self.rep = r
def arguments(self) -> List[str]:
return ([bignum_common.quote_str(self.arg_n), self.rep.symbol(),
bignum_common.quote_str(self.arg_a)] +
self.result())
def description(self) -> str:
base = super().description()
mod_with_rep = 'mod({})'.format(self.rep.name)
return base.replace('mod', mod_with_rep, 1)
@classmethod
def test_cases_for_values(cls, rep: bignum_common.ModulusRepresentation,
n: str, a: str) -> Iterator[test_case.TestCase]:
"""Emit test cases for the given values (if any).
This may emit no test cases if a isn't valid for the modulus n,
or multiple test cases if rep requires different data depending
on the limb size.
"""
for bil in cls.limb_sizes:
test_object = cls(n, a, bits_in_limb=bil)
test_object.set_representation(rep)
# The class is set to having separate test cases for each limb
# size, because the Montgomery representation requires it.
# But other representations don't require it. So for other
# representations, emit a single test case with no dependency
# on the limb size.
if rep is not bignum_common.ModulusRepresentation.MONTGOMERY:
test_object.dependencies = \
[dep for dep in test_object.dependencies
if not dep.startswith('MBEDTLS_HAVE_INT')]
if test_object.is_valid:
yield test_object.create_test_case()
if rep is not bignum_common.ModulusRepresentation.MONTGOMERY:
# A single test case (emitted, or skipped due to invalidity)
# is enough, since this test case doesn't depend on the
# limb size.
break
# The parent class doesn't support non-bignum parameters. So we override
# test generation, in order to have the representation as a parameter.
@classmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
for rep in bignum_common.ModulusRepresentation.supported_representations():
for n in cls.moduli:
for a in cls.input_values:
yield from cls.test_cases_for_values(rep, n, a)
class BignumModRawCanonicalToModulusRep(BignumModRawConvertRep):
"""Test cases for mpi_mod_raw_canonical_to_modulus_rep."""
test_function = "mpi_mod_raw_canonical_to_modulus_rep"
test_name = "Rep canon->mod"
def result(self) -> List[str]:
return [self.format_result(self.convert_from_canonical(self.int_a, self.rep))]
class BignumModRawModulusToCanonicalRep(BignumModRawConvertRep):
"""Test cases for mpi_mod_raw_modulus_to_canonical_rep."""
test_function = "mpi_mod_raw_modulus_to_canonical_rep"
test_name = "Rep mod->canon"
@property
def arg_a(self) -> str:
return self.format_arg("{:x}".format(self.convert_from_canonical(self.int_a, self.rep)))
def result(self) -> List[str]:
return [self.format_result(self.int_a)]
class BignumModRawConvertToMont(bignum_common.ModOperationCommon,
BignumModRawTarget):
""" Test cases for mpi_mod_raw_to_mont_rep(). """
test_function = "mpi_mod_raw_to_mont_rep"
test_name = "Convert into Mont: "
symbol = "R *"
input_style = "arch_split"
arity = 1
def result(self) -> List[str]:
result = self.to_montgomery(self.int_a)
return [self.format_result(result)]
class BignumModRawConvertFromMont(bignum_common.ModOperationCommon,
BignumModRawTarget):
""" Test cases for mpi_mod_raw_from_mont_rep(). """
test_function = "mpi_mod_raw_from_mont_rep"
test_name = "Convert from Mont: "
symbol = "1/R *"
input_style = "arch_split"
arity = 1
def result(self) -> List[str]:
result = self.from_montgomery(self.int_a)
return [self.format_result(result)]
class BignumModRawModNegate(bignum_common.ModOperationCommon,
BignumModRawTarget):
""" Test cases for mpi_mod_raw_neg(). """
test_function = "mpi_mod_raw_neg"
test_name = "Modular negation: "
symbol = "-"
input_style = "arch_split"
arity = 1
def result(self) -> List[str]:
result = (self.int_n - self.int_a) % self.int_n
return [self.format_result(result)]

View File

@ -1,120 +0,0 @@
"""Mbed TLS build tree information and manipulation.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import os
import inspect
from typing import Optional
def looks_like_tf_psa_crypto_root(path: str) -> bool:
"""Whether the given directory looks like the root of the PSA Crypto source tree."""
return all(os.path.isdir(os.path.join(path, subdir))
for subdir in ['include', 'core', 'drivers', 'programs', 'tests'])
def looks_like_mbedtls_root(path: str) -> bool:
"""Whether the given directory looks like the root of the Mbed TLS source tree."""
return all(os.path.isdir(os.path.join(path, subdir))
for subdir in ['include', 'library', 'programs', 'tests'])
def looks_like_root(path: str) -> bool:
return looks_like_tf_psa_crypto_root(path) or looks_like_mbedtls_root(path)
def crypto_core_directory(root: Optional[str] = None, relative: Optional[bool] = False) -> str:
"""
Return the path of the directory containing the PSA crypto core
for either TF-PSA-Crypto or Mbed TLS.
Returns either the full path or relative path depending on the
"relative" boolean argument.
"""
if root is None:
root = guess_project_root()
if looks_like_tf_psa_crypto_root(root):
if relative:
return "core"
return os.path.join(root, "core")
elif looks_like_mbedtls_root(root):
if relative:
return "library"
return os.path.join(root, "library")
else:
raise Exception('Neither Mbed TLS nor TF-PSA-Crypto source tree found')
def crypto_library_filename(root: Optional[str] = None) -> str:
"""Return the crypto library filename for either TF-PSA-Crypto or Mbed TLS."""
if root is None:
root = guess_project_root()
if looks_like_tf_psa_crypto_root(root):
return "tfpsacrypto"
elif looks_like_mbedtls_root(root):
return "mbedcrypto"
else:
raise Exception('Neither Mbed TLS nor TF-PSA-Crypto source tree found')
def check_repo_path():
"""Check that the current working directory is the project root, and throw
an exception if not.
"""
if not all(os.path.isdir(d) for d in ["include", "library", "tests"]):
raise Exception("This script must be run from Mbed TLS root")
def chdir_to_root() -> None:
"""Detect the root of the Mbed TLS source tree and change to it.
The current directory must be up to two levels deep inside an Mbed TLS
source tree.
"""
for d in [os.path.curdir,
os.path.pardir,
os.path.join(os.path.pardir, os.path.pardir)]:
if looks_like_root(d):
os.chdir(d)
return
raise Exception('Mbed TLS source tree not found')
def guess_project_root():
"""Guess project source code directory.
Return the first possible project root directory.
"""
dirs = set({})
for frame in inspect.stack():
path = os.path.dirname(frame.filename)
for d in ['.', os.path.pardir] \
+ [os.path.join(*([os.path.pardir]*i)) for i in range(2, 10)]:
d = os.path.abspath(os.path.join(path, d))
if d in dirs:
continue
dirs.add(d)
if looks_like_root(d):
return d
raise Exception('Neither Mbed TLS nor TF-PSA-Crypto source tree found')
def guess_mbedtls_root(root: Optional[str] = None) -> str:
"""Guess Mbed TLS source code directory.
Return the first possible Mbed TLS root directory.
Raise an exception if we are not in Mbed TLS.
"""
if root is None:
root = guess_project_root()
if looks_like_mbedtls_root(root):
return root
else:
raise Exception('Mbed TLS source tree not found')
def guess_tf_psa_crypto_root(root: Optional[str] = None) -> str:
"""Guess TF-PSA-Crypto source code directory.
Return the first possible TF-PSA-Crypto root directory.
Raise an exception if we are not in TF-PSA-Crypto.
"""
if root is None:
root = guess_project_root()
if looks_like_tf_psa_crypto_root(root):
return root
else:
raise Exception('TF-PSA-Crypto source tree not found')

View File

@ -1,162 +0,0 @@
"""Generate and run C code.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import os
import platform
import subprocess
import sys
import tempfile
def remove_file_if_exists(filename):
"""Remove the specified file, ignoring errors."""
if not filename:
return
try:
os.remove(filename)
except OSError:
pass
def create_c_file(file_label):
"""Create a temporary C file.
* ``file_label``: a string that will be included in the file name.
Return ```(c_file, c_name, exe_name)``` where ``c_file`` is a Python
stream open for writing to the file, ``c_name`` is the name of the file
and ``exe_name`` is the name of the executable that will be produced
by compiling the file.
"""
c_fd, c_name = tempfile.mkstemp(prefix='tmp-{}-'.format(file_label),
suffix='.c')
exe_suffix = '.exe' if platform.system() == 'Windows' else ''
exe_name = c_name[:-2] + exe_suffix
remove_file_if_exists(exe_name)
c_file = os.fdopen(c_fd, 'w', encoding='ascii')
return c_file, c_name, exe_name
def generate_c_printf_expressions(c_file, cast_to, printf_format, expressions):
"""Generate C instructions to print the value of ``expressions``.
Write the code with ``c_file``'s ``write`` method.
Each expression is cast to the type ``cast_to`` and printed with the
printf format ``printf_format``.
"""
for expr in expressions:
c_file.write(' printf("{}\\n", ({}) {});\n'
.format(printf_format, cast_to, expr))
def generate_c_file(c_file,
caller, header,
main_generator):
"""Generate a temporary C source file.
* ``c_file`` is an open stream on the C source file.
* ``caller``: an informational string written in a comment at the top
of the file.
* ``header``: extra code to insert before any function in the generated
C file.
* ``main_generator``: a function called with ``c_file`` as its sole argument
to generate the body of the ``main()`` function.
"""
c_file.write('/* Generated by {} */'
.format(caller))
c_file.write('''
#include <stdio.h>
''')
c_file.write(header)
c_file.write('''
int main(void)
{
''')
main_generator(c_file)
c_file.write(''' return 0;
}
''')
def compile_c_file(c_filename, exe_filename, include_dirs):
"""Compile a C source file with the host compiler.
* ``c_filename``: the name of the source file to compile.
* ``exe_filename``: the name for the executable to be created.
* ``include_dirs``: a list of paths to include directories to be passed
with the -I switch.
"""
# Respect $HOSTCC if it is set
cc = os.getenv('HOSTCC', None)
if cc is None:
cc = os.getenv('CC', 'cc')
cmd = [cc]
proc = subprocess.Popen(cmd,
stdout=subprocess.DEVNULL,
stderr=subprocess.PIPE,
universal_newlines=True)
cc_is_msvc = 'Microsoft (R) C/C++' in proc.communicate()[1]
cmd += ['-I' + dir for dir in include_dirs]
if cc_is_msvc:
# MSVC has deprecated using -o to specify the output file,
# and produces an object file in the working directory by default.
obj_filename = exe_filename[:-4] + '.obj'
cmd += ['-Fe' + exe_filename, '-Fo' + obj_filename]
else:
cmd += ['-o' + exe_filename]
subprocess.check_call(cmd + [c_filename])
def get_c_expression_values(
cast_to, printf_format,
expressions,
caller=__name__, file_label='',
header='', include_path=None,
keep_c=False,
): # pylint: disable=too-many-arguments, too-many-locals
"""Generate and run a program to print out numerical values for expressions.
* ``cast_to``: a C type.
* ``printf_format``: a printf format suitable for the type ``cast_to``.
* ``header``: extra code to insert before any function in the generated
C file.
* ``expressions``: a list of C language expressions that have the type
``cast_to``.
* ``include_path``: a list of directories containing header files.
* ``keep_c``: if true, keep the temporary C file (presumably for debugging
purposes).
Use the C compiler specified by the ``CC`` environment variable, defaulting
to ``cc``. If ``CC`` looks like MSVC, use its command line syntax,
otherwise assume the compiler supports Unix traditional ``-I`` and ``-o``.
Return the list of values of the ``expressions``.
"""
if include_path is None:
include_path = []
c_name = None
exe_name = None
obj_name = None
try:
c_file, c_name, exe_name = create_c_file(file_label)
generate_c_file(
c_file, caller, header,
lambda c_file: generate_c_printf_expressions(c_file,
cast_to, printf_format,
expressions)
)
c_file.close()
compile_c_file(c_name, exe_name, include_path)
if keep_c:
sys.stderr.write('List of {} tests kept at {}\n'
.format(caller, c_name))
else:
os.remove(c_name)
output = subprocess.check_output([exe_name])
return output.decode('ascii').strip().split('\n')
finally:
remove_file_if_exists(exe_name)
remove_file_if_exists(obj_name)

View File

@ -1,131 +0,0 @@
"""Helper functions to parse C code in heavily constrained scenarios.
Currently supported functionality:
* read_function_declarations: read function declarations from a header file.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
### WARNING: the code in this file has not been extensively reviewed yet.
### We do not think it is harmful, but it may be below our normal standards
### for robustness and maintainability.
import re
from typing import Dict, Iterable, Iterator, List, Optional, Tuple
class ArgumentInfo:
"""Information about an argument to an API function."""
#pylint: disable=too-few-public-methods
_KEYWORDS = [
'const', 'register', 'restrict',
'int', 'long', 'short', 'signed', 'unsigned',
]
_DECLARATION_RE = re.compile(
r'(?P<type>\w[\w\s*]*?)\s*' +
r'(?!(?:' + r'|'.join(_KEYWORDS) + r'))(?P<name>\b\w+\b)?' +
r'\s*(?P<suffix>\[[^][]*\])?\Z',
re.A | re.S)
@classmethod
def normalize_type(cls, typ: str) -> str:
"""Normalize whitespace in a type."""
typ = re.sub(r'\s+', r' ', typ)
typ = re.sub(r'\s*\*', r' *', typ)
return typ
def __init__(self, decl: str) -> None:
self.decl = decl.strip()
m = self._DECLARATION_RE.match(self.decl)
if not m:
raise ValueError(self.decl)
self.type = self.normalize_type(m.group('type')) #type: str
self.name = m.group('name') #type: Optional[str]
self.suffix = m.group('suffix') if m.group('suffix') else '' #type: str
class FunctionInfo:
"""Information about an API function."""
#pylint: disable=too-few-public-methods
# Regex matching the declaration of a function that returns void.
VOID_RE = re.compile(r'\s*\bvoid\s*\Z', re.A)
def __init__(self, #pylint: disable=too-many-arguments
filename: str,
line_number: int,
qualifiers: Iterable[str],
return_type: str,
name: str,
arguments: List[str]) -> None:
self.filename = filename
self.line_number = line_number
self.qualifiers = frozenset(qualifiers)
self.return_type = return_type
self.name = name
self.arguments = [ArgumentInfo(arg) for arg in arguments]
def returns_void(self) -> bool:
"""Whether the function returns void."""
return bool(self.VOID_RE.search(self.return_type))
# Match one C comment.
# Note that we match both comment types, so things like // in a /*...*/
# comment are handled correctly.
_C_COMMENT_RE = re.compile(r'//(?:[^\n]|\\\n)*|/\*.*?\*/', re.S)
_NOT_NEWLINES_RE = re.compile(r'[^\n]+')
def read_logical_lines(filename: str) -> Iterator[Tuple[int, str]]:
"""Read logical lines from a file.
Logical lines are one or more physical line, with balanced parentheses.
"""
with open(filename, encoding='utf-8') as inp:
content = inp.read()
# Strip comments, but keep newlines for line numbering
content = re.sub(_C_COMMENT_RE,
lambda m: re.sub(_NOT_NEWLINES_RE, "", m.group(0)),
content)
lines = enumerate(content.splitlines(), 1)
for line_number, line in lines:
# Read a logical line, containing balanced parentheses.
# We assume that parentheses are balanced (this should be ok
# since comments have been stripped), otherwise there will be
# a gigantic logical line at the end.
paren_level = line.count('(') - line.count(')')
while paren_level > 0:
_, more = next(lines) #pylint: disable=stop-iteration-return
paren_level += more.count('(') - more.count(')')
line += '\n' + more
yield line_number, line
_C_FUNCTION_DECLARATION_RE = re.compile(
r'(?P<qualifiers>(?:(?:extern|inline|static)\b\s*)*)'
r'(?P<return_type>\w[\w\s*]*?)\s*' +
r'\b(?P<name>\w+)' +
r'\s*\((?P<arguments>.*)\)\s*;',
re.A | re.S)
def read_function_declarations(functions: Dict[str, FunctionInfo],
filename: str) -> None:
"""Collect function declarations from a C header file."""
for line_number, line in read_logical_lines(filename):
m = _C_FUNCTION_DECLARATION_RE.match(line)
if not m:
continue
qualifiers = m.group('qualifiers').split()
return_type = m.group('return_type')
name = m.group('name')
arguments = m.group('arguments').split(',')
if len(arguments) == 1 and re.match(FunctionInfo.VOID_RE, arguments[0]):
arguments = []
# Note: we replace any existing declaration for the same name.
functions[name] = FunctionInfo(filename, line_number,
qualifiers,
return_type,
name,
arguments)

View File

@ -1,473 +0,0 @@
"""Generate C wrapper functions.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
### WARNING: the code in this file has not been extensively reviewed yet.
### We do not think it is harmful, but it may be below our normal standards
### for robustness and maintainability.
import os
import re
import sys
import typing
from typing import Dict, List, Optional, Tuple
from .c_parsing_helper import ArgumentInfo, FunctionInfo
from . import typing_util
def c_declare(prefix: str, name: str, suffix: str) -> str:
"""Format a declaration of name with the given type prefix and suffix."""
if not prefix.endswith('*'):
prefix += ' '
return prefix + name + suffix
WrapperInfo = typing.NamedTuple('WrapperInfo', [
('argument_names', List[str]),
('guard', Optional[str]),
('wrapper_name', str),
])
class Base:
"""Generate a C source file containing wrapper functions."""
# This class is designed to have many methods potentially overloaded.
# Tell pylint not to complain about methods that have unused arguments:
# child classes are likely to override those methods and need the
# arguments in question.
#pylint: disable=no-self-use,unused-argument
# Prefix prepended to the function's name to form the wrapper name.
_WRAPPER_NAME_PREFIX = ''
# Suffix appended to the function's name to form the wrapper name.
_WRAPPER_NAME_SUFFIX = '_wrap'
# Functions with one of these qualifiers are skipped.
_SKIP_FUNCTION_WITH_QUALIFIERS = frozenset(['inline', 'static'])
def __init__(self):
"""Construct a wrapper generator object.
"""
self.program_name = os.path.basename(sys.argv[0])
# To be populated in a derived class
self.functions = {} #type: Dict[str, FunctionInfo]
# Preprocessor symbol used as a guard against multiple inclusion in the
# header. Must be set before writing output to a header.
# Not used when writing .c output.
self.header_guard = None #type: Optional[str]
def _write_prologue(self, out: typing_util.Writable, header: bool) -> None:
"""Write the prologue of a C file.
This includes a description comment and some include directives.
"""
out.write("""/* Automatically generated by {}, do not edit! */
/* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
"""
.format(self.program_name))
if header:
out.write("""
#ifndef {guard}
#define {guard}
#ifdef __cplusplus
extern "C" {{
#endif
"""
.format(guard=self.header_guard))
out.write("""
#include <mbedtls/build_info.h>
""")
def _write_epilogue(self, out: typing_util.Writable, header: bool) -> None:
"""Write the epilogue of a C file.
"""
if header:
out.write("""
#ifdef __cplusplus
}}
#endif
#endif /* {guard} */
"""
.format(guard=self.header_guard))
out.write("""
/* End of automatically generated file. */
""")
def _wrapper_function_name(self, original_name: str) -> str:
"""The name of the wrapper function.
By default, this adds a suffix.
"""
return (self._WRAPPER_NAME_PREFIX +
original_name +
self._WRAPPER_NAME_SUFFIX)
def _wrapper_declaration_start(self,
function: FunctionInfo,
wrapper_name: str) -> str:
"""The beginning of the wrapper function declaration.
This ends just before the opening parenthesis of the argument list.
This is a string containing at least the return type and the
function name. It may start with additional qualifiers or attributes
such as `static`, `__attribute__((...))`, etc.
"""
return c_declare(function.return_type, wrapper_name, '')
def _argument_name(self,
function_name: str,
num: int,
arg: ArgumentInfo) -> str:
"""Name to use for the given argument in the wrapper function.
Argument numbers count from 0.
"""
name = 'arg' + str(num)
if arg.name:
name += '_' + arg.name
return name
def _wrapper_declaration_argument(self,
function_name: str,
num: int, name: str,
arg: ArgumentInfo) -> str:
"""One argument definition in the wrapper function declaration.
Argument numbers count from 0.
"""
return c_declare(arg.type, name, arg.suffix)
def _underlying_function_name(self, function: FunctionInfo) -> str:
"""The name of the underlying function.
By default, this is the name of the wrapped function.
"""
return function.name
def _return_variable_name(self, function: FunctionInfo) -> str:
"""The name of the variable that will contain the return value."""
return 'retval'
def _write_function_call(self, out: typing_util.Writable,
function: FunctionInfo,
argument_names: List[str]) -> None:
"""Write the call to the underlying function.
"""
# Note that the function name is in parentheses, to avoid calling
# a function-like macro with the same name, since in typical usage
# there is a function-like macro with the same name which is the
# wrapper.
call = '({})({})'.format(self._underlying_function_name(function),
', '.join(argument_names))
if function.returns_void():
out.write(' {};\n'.format(call))
else:
ret_name = self._return_variable_name(function)
ret_decl = c_declare(function.return_type, ret_name, '')
out.write(' {} = {};\n'.format(ret_decl, call))
def _write_function_return(self, out: typing_util.Writable,
function: FunctionInfo,
if_void: bool = False) -> None:
"""Write a return statement.
If the function returns void, only write a statement if if_void is true.
"""
if function.returns_void():
if if_void:
out.write(' return;\n')
else:
ret_name = self._return_variable_name(function)
out.write(' return {};\n'.format(ret_name))
def _write_function_body(self, out: typing_util.Writable,
function: FunctionInfo,
argument_names: List[str]) -> None:
"""Write the body of the wrapper code for the specified function.
"""
self._write_function_call(out, function, argument_names)
self._write_function_return(out, function)
def _skip_function(self, function: FunctionInfo) -> bool:
"""Whether to skip this function.
By default, static or inline functions are skipped.
"""
if not self._SKIP_FUNCTION_WITH_QUALIFIERS.isdisjoint(function.qualifiers):
return True
return False
_FUNCTION_GUARDS = {
} #type: Dict[str, str]
def _function_guard(self, function: FunctionInfo) -> Optional[str]:
"""A preprocessor condition for this function.
The wrapper will be guarded with `#if` on this condition, if not None.
"""
return self._FUNCTION_GUARDS.get(function.name)
def _wrapper_info(self, function: FunctionInfo) -> Optional[WrapperInfo]:
"""Information about the wrapper for one function.
Return None if the function should be skipped.
"""
if self._skip_function(function):
return None
argument_names = [self._argument_name(function.name, num, arg)
for num, arg in enumerate(function.arguments)]
return WrapperInfo(
argument_names=argument_names,
guard=self._function_guard(function),
wrapper_name=self._wrapper_function_name(function.name),
)
def _write_function_prototype(self, out: typing_util.Writable,
function: FunctionInfo,
wrapper: WrapperInfo,
header: bool) -> None:
"""Write the prototype of a wrapper function.
If header is true, write a function declaration, with a semicolon at
the end. Otherwise just write the prototype, intended to be followed
by the function's body.
"""
declaration_start = self._wrapper_declaration_start(function,
wrapper.wrapper_name)
arg_indent = ' '
terminator = ';\n' if header else '\n'
if function.arguments:
out.write(declaration_start + '(\n')
for num in range(len(function.arguments)):
arg_def = self._wrapper_declaration_argument(
function.name,
num, wrapper.argument_names[num], function.arguments[num])
arg_terminator = \
(')' + terminator if num == len(function.arguments) - 1 else
',\n')
out.write(arg_indent + arg_def + arg_terminator)
else:
out.write(declaration_start + '(void)' + terminator)
def _write_c_function(self, out: typing_util.Writable,
function: FunctionInfo) -> None:
"""Write wrapper code for one function.
Do nothing if the function is skipped.
"""
wrapper = self._wrapper_info(function)
if wrapper is None:
return
out.write("""
/* Wrapper for {} */
"""
.format(function.name))
if wrapper.guard is not None:
out.write('#if {}\n'.format(wrapper.guard))
self._write_function_prototype(out, function, wrapper, False)
out.write('{\n')
self._write_function_body(out, function, wrapper.argument_names)
out.write('}\n')
if wrapper.guard is not None:
out.write('#endif /* {} */\n'.format(wrapper.guard))
def _write_h_function_declaration(self, out: typing_util.Writable,
function: FunctionInfo,
wrapper: WrapperInfo) -> None:
"""Write the declaration of one wrapper function.
"""
self._write_function_prototype(out, function, wrapper, True)
def _write_h_macro_definition(self, out: typing_util.Writable,
function: FunctionInfo,
wrapper: WrapperInfo) -> None:
"""Write the macro definition for one wrapper.
"""
arg_list = ', '.join(wrapper.argument_names)
out.write('#define {function_name}({args}) \\\n {wrapper_name}({args})\n'
.format(function_name=function.name,
wrapper_name=wrapper.wrapper_name,
args=arg_list))
def _write_h_function(self, out: typing_util.Writable,
function: FunctionInfo) -> None:
"""Write the complete header content for one wrapper.
This is the declaration of the wrapper function, and the
definition of a function-like macro that calls the wrapper function.
Do nothing if the function is skipped.
"""
wrapper = self._wrapper_info(function)
if wrapper is None:
return
out.write('\n')
if wrapper.guard is not None:
out.write('#if {}\n'.format(wrapper.guard))
self._write_h_function_declaration(out, function, wrapper)
self._write_h_macro_definition(out, function, wrapper)
if wrapper.guard is not None:
out.write('#endif /* {} */\n'.format(wrapper.guard))
def write_c_file(self, filename: str) -> None:
"""Output a whole C file containing function wrapper definitions."""
with open(filename, 'w', encoding='utf-8') as out:
self._write_prologue(out, False)
for name in sorted(self.functions):
self._write_c_function(out, self.functions[name])
self._write_epilogue(out, False)
def _header_guard_from_file_name(self, filename: str) -> str:
"""Preprocessor symbol used as a guard against multiple inclusion."""
# Heuristic to strip irrelevant leading directories
filename = re.sub(r'.*include[\\/]', r'', filename)
return re.sub(r'[^0-9A-Za-z]', r'_', filename, re.A).upper()
def write_h_file(self, filename: str) -> None:
"""Output a header file with function wrapper declarations and macro definitions."""
self.header_guard = self._header_guard_from_file_name(filename)
with open(filename, 'w', encoding='utf-8') as out:
self._write_prologue(out, True)
for name in sorted(self.functions):
self._write_h_function(out, self.functions[name])
self._write_epilogue(out, True)
class UnknownTypeForPrintf(Exception):
"""Exception raised when attempting to generate code that logs a value of an unknown type."""
def __init__(self, typ: str) -> None:
super().__init__("Unknown type for printf format generation: " + typ)
class Logging(Base):
"""Generate wrapper functions that log the inputs and outputs."""
def __init__(self) -> None:
"""Construct a wrapper generator including logging of inputs and outputs.
Log to stdout by default. Call `set_stream` to change this.
"""
super().__init__()
self.stream = 'stdout'
def set_stream(self, stream: str) -> None:
"""Set the stdio stream to log to.
Call this method before calling `write_c_output` or `write_h_output`.
"""
self.stream = stream
def _write_prologue(self, out: typing_util.Writable, header: bool) -> None:
super()._write_prologue(out, header)
if not header:
out.write("""
#if defined(MBEDTLS_FS_IO) && defined(MBEDTLS_TEST_HOOKS)
#include <stdio.h>
#include <inttypes.h>
#include <mbedtls/debug.h> // for MBEDTLS_PRINTF_SIZET
#include <mbedtls/platform.h> // for mbedtls_fprintf
#endif /* defined(MBEDTLS_FS_IO) && defined(MBEDTLS_TEST_HOOKS) */
""")
_PRINTF_SIMPLE_FORMAT = {
'int': '%d',
'long': '%ld',
'long long': '%lld',
'size_t': '%"MBEDTLS_PRINTF_SIZET"',
'unsigned': '0x%08x',
'unsigned int': '0x%08x',
'unsigned long': '0x%08lx',
'unsigned long long': '0x%016llx',
}
def _printf_simple_format(self, typ: str) -> Optional[str]:
"""Use this printf format for a value of typ.
Return None if values of typ need more complex handling.
"""
return self._PRINTF_SIMPLE_FORMAT.get(typ)
_PRINTF_TYPE_CAST = {
'int32_t': 'int',
'uint32_t': 'unsigned',
'uint64_t': 'unsigned long long',
} #type: Dict[str, str]
def _printf_type_cast(self, typ: str) -> Optional[str]:
"""Cast values of typ to this type before passing them to printf.
Return None if values of the given type do not need a cast.
"""
return self._PRINTF_TYPE_CAST.get(typ)
_POINTER_TYPE_RE = re.compile(r'\s*\*\Z')
def _printf_parameters(self, typ: str, var: str) -> Tuple[str, List[str]]:
"""The printf format and arguments for a value of type typ stored in var.
"""
expr = var
base_type = typ
# For outputs via a pointer, get the value that has been written.
# Note: we don't support pointers to pointers here.
pointer_match = self._POINTER_TYPE_RE.search(base_type)
if pointer_match:
base_type = base_type[:pointer_match.start(0)]
expr = '*({})'.format(expr)
# Maybe cast the value to a standard type.
cast_to = self._printf_type_cast(base_type)
if cast_to is not None:
expr = '({}) {}'.format(cast_to, expr)
base_type = cast_to
# Try standard types.
fmt = self._printf_simple_format(base_type)
if fmt is not None:
return '{}={}'.format(var, fmt), [expr]
raise UnknownTypeForPrintf(typ)
def _write_function_logging(self, out: typing_util.Writable,
function: FunctionInfo,
argument_names: List[str]) -> None:
"""Write code to log the function's inputs and outputs."""
formats, values = '%s', ['"' + function.name + '"']
for arg_info, arg_name in zip(function.arguments, argument_names):
fmt, vals = self._printf_parameters(arg_info.type, arg_name)
if fmt:
formats += ' ' + fmt
values += vals
if not function.returns_void():
ret_name = self._return_variable_name(function)
fmt, vals = self._printf_parameters(function.return_type, ret_name)
if fmt:
formats += ' ' + fmt
values += vals
out.write("""\
#if defined(MBEDTLS_FS_IO) && defined(MBEDTLS_TEST_HOOKS)
if ({stream}) {{
mbedtls_fprintf({stream}, "{formats}\\n",
{values});
}}
#endif /* defined(MBEDTLS_FS_IO) && defined(MBEDTLS_TEST_HOOKS) */
"""
.format(stream=self.stream,
formats=formats,
values=', '.join(values)))
def _write_function_body(self, out: typing_util.Writable,
function: FunctionInfo,
argument_names: List[str]) -> None:
"""Write the body of the wrapper code for the specified function.
"""
self._write_function_call(out, function, argument_names)
self._write_function_logging(out, function, argument_names)
self._write_function_return(out, function)

View File

@ -1,112 +0,0 @@
"""Generate test data for cryptographic mechanisms.
This module is a work in progress, only implementing a few cases for now.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import hashlib
from typing import Callable, Dict, Iterator, List, Optional #pylint: disable=unused-import
from . import crypto_knowledge
from . import psa_information
from . import test_case
def psa_low_level_dependencies(*expressions: str) -> List[str]:
"""Infer dependencies of a PSA low-level test case by looking for PSA_xxx symbols.
This function generates MBEDTLS_PSA_BUILTIN_xxx symbols.
"""
high_level = psa_information.automatic_dependencies(*expressions)
for dep in high_level:
assert dep.startswith('PSA_WANT_')
return ['MBEDTLS_PSA_BUILTIN_' + dep[9:] for dep in high_level]
class HashPSALowLevel:
"""Generate test cases for the PSA low-level hash interface."""
def __init__(self, info: psa_information.Information) -> None:
self.info = info
base_algorithms = sorted(info.constructors.algorithms)
all_algorithms = \
[crypto_knowledge.Algorithm(expr)
for expr in info.constructors.generate_expressions(base_algorithms)]
self.algorithms = \
[alg
for alg in all_algorithms
if (not alg.is_wildcard and
alg.can_do(crypto_knowledge.AlgorithmCategory.HASH))]
# CALCULATE[alg] = function to return the hash of its argument in hex
# TO-DO: implement the None entries with a third-party library, because
# hashlib might not have everything, depending on the Python version and
# the underlying OpenSSL. On Ubuntu 16.04, truncated sha512 and sha3/shake
# are not available. On Ubuntu 22.04, md2, md4 and ripemd160 are not
# available.
CALCULATE = {
'PSA_ALG_MD5': lambda data: hashlib.md5(data).hexdigest(),
'PSA_ALG_RIPEMD160': None, #lambda data: hashlib.new('ripdemd160').hexdigest()
'PSA_ALG_SHA_1': lambda data: hashlib.sha1(data).hexdigest(),
'PSA_ALG_SHA_224': lambda data: hashlib.sha224(data).hexdigest(),
'PSA_ALG_SHA_256': lambda data: hashlib.sha256(data).hexdigest(),
'PSA_ALG_SHA_384': lambda data: hashlib.sha384(data).hexdigest(),
'PSA_ALG_SHA_512': lambda data: hashlib.sha512(data).hexdigest(),
'PSA_ALG_SHA_512_224': None, #lambda data: hashlib.new('sha512_224').hexdigest()
'PSA_ALG_SHA_512_256': None, #lambda data: hashlib.new('sha512_256').hexdigest()
'PSA_ALG_SHA3_224': None, #lambda data: hashlib.sha3_224(data).hexdigest(),
'PSA_ALG_SHA3_256': None, #lambda data: hashlib.sha3_256(data).hexdigest(),
'PSA_ALG_SHA3_384': None, #lambda data: hashlib.sha3_384(data).hexdigest(),
'PSA_ALG_SHA3_512': None, #lambda data: hashlib.sha3_512(data).hexdigest(),
'PSA_ALG_SHAKE256_512': None, #lambda data: hashlib.shake_256(data).hexdigest(64),
} #type: Dict[str, Optional[Callable[[bytes], str]]]
@staticmethod
def one_test_case(alg: crypto_knowledge.Algorithm,
function: str, note: str,
arguments: List[str]) -> test_case.TestCase:
"""Construct one test case involving a hash."""
tc = test_case.TestCase()
tc.set_description('{}{} {}'
.format(function,
' ' + note if note else '',
alg.short_expression()))
tc.set_dependencies(psa_low_level_dependencies(alg.expression))
tc.set_function(function)
tc.set_arguments([alg.expression] +
['"{}"'.format(arg) for arg in arguments])
return tc
def test_cases_for_hash(self,
alg: crypto_knowledge.Algorithm
) -> Iterator[test_case.TestCase]:
"""Enumerate all test cases for one hash algorithm."""
calc = self.CALCULATE[alg.expression]
if calc is None:
return # not implemented yet
short = b'abc'
hash_short = calc(short)
long = (b'Hello, world. Here are 16 unprintable bytes: ['
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a'
b'\x80\x81\x82\x83\xfe\xff]. '
b' This message was brought to you by a natural intelligence. '
b' If you can read this, good luck with your debugging!')
hash_long = calc(long)
yield self.one_test_case(alg, 'hash_empty', '', [calc(b'')])
yield self.one_test_case(alg, 'hash_valid_one_shot', '',
[short.hex(), hash_short])
for n in [0, 1, 64, len(long) - 1, len(long)]:
yield self.one_test_case(alg, 'hash_valid_multipart',
'{} + {}'.format(n, len(long) - n),
[long[:n].hex(), calc(long[:n]),
long[n:].hex(), hash_long])
def all_test_cases(self) -> Iterator[test_case.TestCase]:
"""Enumerate all test cases for all hash algorithms."""
for alg in self.algorithms:
yield from self.test_cases_for_hash(alg)

View File

@ -1,568 +0,0 @@
"""Knowledge about cryptographic mechanisms implemented in Mbed TLS.
This module is entirely based on the PSA API.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import enum
import re
from typing import FrozenSet, Iterable, List, Optional, Tuple, Dict
from .asymmetric_key_data import ASYMMETRIC_KEY_DATA
def short_expression(original: str, level: int = 0) -> str:
"""Abbreviate the expression, keeping it human-readable.
If `level` is 0, just remove parts that are implicit from context,
such as a leading ``PSA_KEY_TYPE_``.
For larger values of `level`, also abbreviate some names in an
unambiguous, but ad hoc way.
"""
short = original
short = re.sub(r'\bPSA_(?:ALG|DH_FAMILY|ECC_FAMILY|KEY_[A-Z]+)_', r'', short)
short = re.sub(r' +', r'', short)
if level >= 1:
short = re.sub(r'PUBLIC_KEY\b', r'PUB', short)
short = re.sub(r'KEY_PAIR\b', r'PAIR', short)
short = re.sub(r'\bBRAINPOOL_P', r'BP', short)
short = re.sub(r'\bMONTGOMERY\b', r'MGM', short)
short = re.sub(r'AEAD_WITH_SHORTENED_TAG\b', r'AEAD_SHORT', short)
short = re.sub(r'\bDETERMINISTIC_', r'DET_', short)
short = re.sub(r'\bKEY_AGREEMENT\b', r'KA', short)
short = re.sub(r'_PSK_TO_MS\b', r'_PSK2MS', short)
return short
BLOCK_CIPHERS = frozenset(['AES', 'ARIA', 'CAMELLIA', 'DES'])
BLOCK_MAC_MODES = frozenset(['CBC_MAC', 'CMAC'])
BLOCK_CIPHER_MODES = frozenset([
'CTR', 'CFB', 'OFB', 'XTS', 'CCM_STAR_NO_TAG',
'ECB_NO_PADDING', 'CBC_NO_PADDING', 'CBC_PKCS7',
])
BLOCK_AEAD_MODES = frozenset(['CCM', 'GCM'])
class EllipticCurveCategory(enum.Enum):
"""Categorization of elliptic curve families.
The category of a curve determines what algorithms are defined over it.
"""
SHORT_WEIERSTRASS = 0
MONTGOMERY = 1
TWISTED_EDWARDS = 2
@staticmethod
def from_family(family: str) -> 'EllipticCurveCategory':
if family == 'PSA_ECC_FAMILY_MONTGOMERY':
return EllipticCurveCategory.MONTGOMERY
if family == 'PSA_ECC_FAMILY_TWISTED_EDWARDS':
return EllipticCurveCategory.TWISTED_EDWARDS
# Default to SW, which most curves belong to.
return EllipticCurveCategory.SHORT_WEIERSTRASS
class KeyType:
"""Knowledge about a PSA key type."""
def __init__(self, name: str, params: Optional[Iterable[str]] = None) -> None:
"""Analyze a key type.
The key type must be specified in PSA syntax. In its simplest form,
`name` is a string 'PSA_KEY_TYPE_xxx' which is the name of a PSA key
type macro. For key types that take arguments, the arguments can
be passed either through the optional argument `params` or by
passing an expression of the form 'PSA_KEY_TYPE_xxx(param1, ...)'
in `name` as a string.
"""
self.name = name.strip()
"""The key type macro name (``PSA_KEY_TYPE_xxx``).
For key types constructed from a macro with arguments, this is the
name of the macro, and the arguments are in `self.params`.
"""
if params is None:
if '(' in self.name:
m = re.match(r'(\w+)\s*\((.*)\)\Z', self.name)
assert m is not None
self.name = m.group(1)
params = m.group(2).split(',')
self.params = (None if params is None else
[param.strip() for param in params])
"""The parameters of the key type, if there are any.
None if the key type is a macro without arguments.
"""
assert re.match(r'PSA_KEY_TYPE_\w+\Z', self.name)
self.expression = self.name
"""A C expression whose value is the key type encoding."""
if self.params is not None:
self.expression += '(' + ', '.join(self.params) + ')'
m = re.match(r'PSA_KEY_TYPE_(\w+)', self.name)
assert m
self.head = re.sub(r'_(?:PUBLIC_KEY|KEY_PAIR)\Z', r'', m.group(1))
"""The key type macro name, with common prefixes and suffixes stripped."""
self.private_type = re.sub(r'_PUBLIC_KEY\Z', r'_KEY_PAIR', self.name)
"""The key type macro name for the corresponding key pair type.
For everything other than a public key type, this is the same as
`self.name`.
"""
def short_expression(self, level: int = 0) -> str:
"""Abbreviate the expression, keeping it human-readable.
See `crypto_knowledge.short_expression`.
"""
return short_expression(self.expression, level=level)
def is_public(self) -> bool:
"""Whether the key type is for public keys."""
return self.name.endswith('_PUBLIC_KEY')
DH_KEY_SIZES = {
'PSA_DH_FAMILY_RFC7919': (2048, 3072, 4096, 6144, 8192),
} # type: Dict[str, Tuple[int, ...]]
ECC_KEY_SIZES = {
'PSA_ECC_FAMILY_SECP_K1': (192, 225, 256),
'PSA_ECC_FAMILY_SECP_R1': (224, 256, 384, 521),
'PSA_ECC_FAMILY_SECP_R2': (160,),
'PSA_ECC_FAMILY_SECT_K1': (163, 233, 239, 283, 409, 571),
'PSA_ECC_FAMILY_SECT_R1': (163, 233, 283, 409, 571),
'PSA_ECC_FAMILY_SECT_R2': (163,),
'PSA_ECC_FAMILY_BRAINPOOL_P_R1': (160, 192, 224, 256, 320, 384, 512),
'PSA_ECC_FAMILY_MONTGOMERY': (255, 448),
'PSA_ECC_FAMILY_TWISTED_EDWARDS': (255, 448),
} # type: Dict[str, Tuple[int, ...]]
KEY_TYPE_SIZES = {
'PSA_KEY_TYPE_AES': (128, 192, 256), # exhaustive
'PSA_KEY_TYPE_ARIA': (128, 192, 256), # exhaustive
'PSA_KEY_TYPE_CAMELLIA': (128, 192, 256), # exhaustive
'PSA_KEY_TYPE_CHACHA20': (256,), # exhaustive
'PSA_KEY_TYPE_DERIVE': (120, 128), # sample
'PSA_KEY_TYPE_DES': (64, 128, 192), # exhaustive
'PSA_KEY_TYPE_HMAC': (128, 160, 224, 256, 384, 512), # standard size for each supported hash
'PSA_KEY_TYPE_PASSWORD': (48, 168, 336), # sample
'PSA_KEY_TYPE_PASSWORD_HASH': (128, 256), # sample
'PSA_KEY_TYPE_PEPPER': (128, 256), # sample
'PSA_KEY_TYPE_RAW_DATA': (8, 40, 128), # sample
'PSA_KEY_TYPE_RSA_KEY_PAIR': (1024, 1536), # small sample
} # type: Dict[str, Tuple[int, ...]]
def sizes_to_test(self) -> Tuple[int, ...]:
"""Return a tuple of key sizes to test.
For key types that only allow a single size, or only a small set of
sizes, these are all the possible sizes. For key types that allow a
wide range of sizes, these are a representative sample of sizes,
excluding large sizes for which a typical resource-constrained platform
may run out of memory.
"""
if self.private_type == 'PSA_KEY_TYPE_ECC_KEY_PAIR':
assert self.params is not None
return self.ECC_KEY_SIZES[self.params[0]]
if self.private_type == 'PSA_KEY_TYPE_DH_KEY_PAIR':
assert self.params is not None
return self.DH_KEY_SIZES[self.params[0]]
return self.KEY_TYPE_SIZES[self.private_type]
# "48657265006973206b6579a064617461"
DATA_BLOCK = b'Here\000is key\240data'
def key_material(self, bits: int) -> bytes:
"""Return a byte string containing suitable key material with the given bit length.
Use the PSA export representation. The resulting byte string is one that
can be obtained with the following code:
```
psa_set_key_type(&attributes, `self.expression`);
psa_set_key_bits(&attributes, `bits`);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT);
psa_generate_key(&attributes, &id);
psa_export_key(id, `material`, ...);
```
"""
if self.expression in ASYMMETRIC_KEY_DATA:
if bits not in ASYMMETRIC_KEY_DATA[self.expression]:
raise ValueError('No key data for {}-bit {}'
.format(bits, self.expression))
return ASYMMETRIC_KEY_DATA[self.expression][bits]
if bits % 8 != 0:
raise ValueError('Non-integer number of bytes: {} bits for {}'
.format(bits, self.expression))
length = bits // 8
if self.name == 'PSA_KEY_TYPE_DES':
# "644573206b457901644573206b457902644573206b457904"
des3 = b'dEs kEy\001dEs kEy\002dEs kEy\004'
return des3[:length]
return b''.join([self.DATA_BLOCK] * (length // len(self.DATA_BLOCK)) +
[self.DATA_BLOCK[:length % len(self.DATA_BLOCK)]])
def can_do(self, alg: 'Algorithm') -> bool:
"""Whether this key type can be used for operations with the given algorithm.
This function does not currently handle key derivation or PAKE.
"""
#pylint: disable=too-many-branches,too-many-return-statements
if not alg.is_valid_for_operation():
return False
if self.head == 'HMAC' and alg.head == 'HMAC':
return True
if self.head == 'DES':
# 64-bit block ciphers only allow a reduced set of modes.
return alg.head in [
'CBC_NO_PADDING', 'CBC_PKCS7',
'ECB_NO_PADDING',
]
if self.head in BLOCK_CIPHERS and \
alg.head in frozenset.union(BLOCK_MAC_MODES,
BLOCK_CIPHER_MODES,
BLOCK_AEAD_MODES):
if alg.head in ['CMAC', 'OFB'] and \
self.head in ['ARIA', 'CAMELLIA']:
return False # not implemented in Mbed TLS
return True
if self.head == 'CHACHA20' and alg.head == 'CHACHA20_POLY1305':
return True
if self.head in {'ARC4', 'CHACHA20'} and \
alg.head == 'STREAM_CIPHER':
return True
if self.head == 'RSA' and alg.head.startswith('RSA_'):
return True
if alg.category == AlgorithmCategory.KEY_AGREEMENT and \
self.is_public():
# The PSA API does not use public key objects in key agreement
# operations: it imports the public key as a formatted byte string.
# So a public key object with a key agreement algorithm is not
# a valid combination.
return False
if alg.is_invalid_key_agreement_with_derivation():
return False
if self.head == 'ECC':
assert self.params is not None
eccc = EllipticCurveCategory.from_family(self.params[0])
if alg.head == 'ECDH' and \
eccc in {EllipticCurveCategory.SHORT_WEIERSTRASS,
EllipticCurveCategory.MONTGOMERY}:
return True
if alg.head == 'ECDSA' and \
eccc == EllipticCurveCategory.SHORT_WEIERSTRASS:
return True
if alg.head in {'PURE_EDDSA', 'EDDSA_PREHASH'} and \
eccc == EllipticCurveCategory.TWISTED_EDWARDS:
return True
if self.head == 'DH' and alg.head == 'FFDH':
return True
return False
class AlgorithmCategory(enum.Enum):
"""PSA algorithm categories."""
# The numbers are aligned with the category bits in numerical values of
# algorithms.
HASH = 2
MAC = 3
CIPHER = 4
AEAD = 5
SIGN = 6
ASYMMETRIC_ENCRYPTION = 7
KEY_DERIVATION = 8
KEY_AGREEMENT = 9
PAKE = 10
def requires_key(self) -> bool:
"""Whether operations in this category are set up with a key."""
return self not in {self.HASH, self.KEY_DERIVATION}
def is_asymmetric(self) -> bool:
"""Whether operations in this category involve asymmetric keys."""
return self in {
self.SIGN,
self.ASYMMETRIC_ENCRYPTION,
self.KEY_AGREEMENT
}
class AlgorithmNotRecognized(Exception):
def __init__(self, expr: str) -> None:
super().__init__('Algorithm not recognized: ' + expr)
self.expr = expr
class Algorithm:
"""Knowledge about a PSA algorithm."""
@staticmethod
def determine_base(expr: str) -> str:
"""Return an expression for the "base" of the algorithm.
This strips off variants of algorithms such as MAC truncation.
This function does not attempt to detect invalid inputs.
"""
m = re.match(r'PSA_ALG_(?:'
r'(?:TRUNCATED|AT_LEAST_THIS_LENGTH)_MAC|'
r'AEAD_WITH_(?:SHORTENED|AT_LEAST_THIS_LENGTH)_TAG'
r')\((.*),[^,]+\)\Z', expr)
if m:
expr = m.group(1)
return expr
@staticmethod
def determine_head(expr: str) -> str:
"""Return the head of an algorithm expression.
The head is the first (outermost) constructor, without its PSA_ALG_
prefix, and with some normalization of similar algorithms.
"""
m = re.match(r'PSA_ALG_(?:DETERMINISTIC_)?(\w+)', expr)
if not m:
raise AlgorithmNotRecognized(expr)
head = m.group(1)
if head == 'KEY_AGREEMENT':
m = re.match(r'PSA_ALG_KEY_AGREEMENT\s*\(\s*PSA_ALG_(\w+)', expr)
if not m:
raise AlgorithmNotRecognized(expr)
head = m.group(1)
head = re.sub(r'_ANY\Z', r'', head)
if re.match(r'ED[0-9]+PH\Z', head):
head = 'EDDSA_PREHASH'
return head
CATEGORY_FROM_HEAD = {
'SHA': AlgorithmCategory.HASH,
'SHAKE256_512': AlgorithmCategory.HASH,
'MD': AlgorithmCategory.HASH,
'RIPEMD': AlgorithmCategory.HASH,
'ANY_HASH': AlgorithmCategory.HASH,
'HMAC': AlgorithmCategory.MAC,
'STREAM_CIPHER': AlgorithmCategory.CIPHER,
'CHACHA20_POLY1305': AlgorithmCategory.AEAD,
'DSA': AlgorithmCategory.SIGN,
'ECDSA': AlgorithmCategory.SIGN,
'EDDSA': AlgorithmCategory.SIGN,
'PURE_EDDSA': AlgorithmCategory.SIGN,
'RSA_PSS': AlgorithmCategory.SIGN,
'RSA_PKCS1V15_SIGN': AlgorithmCategory.SIGN,
'RSA_PKCS1V15_CRYPT': AlgorithmCategory.ASYMMETRIC_ENCRYPTION,
'RSA_OAEP': AlgorithmCategory.ASYMMETRIC_ENCRYPTION,
'HKDF': AlgorithmCategory.KEY_DERIVATION,
'TLS12_PRF': AlgorithmCategory.KEY_DERIVATION,
'TLS12_PSK_TO_MS': AlgorithmCategory.KEY_DERIVATION,
'TLS12_ECJPAKE_TO_PMS': AlgorithmCategory.KEY_DERIVATION,
'PBKDF': AlgorithmCategory.KEY_DERIVATION,
'ECDH': AlgorithmCategory.KEY_AGREEMENT,
'FFDH': AlgorithmCategory.KEY_AGREEMENT,
# KEY_AGREEMENT(...) is a key derivation with a key agreement component
'KEY_AGREEMENT': AlgorithmCategory.KEY_DERIVATION,
'JPAKE': AlgorithmCategory.PAKE,
}
for x in BLOCK_MAC_MODES:
CATEGORY_FROM_HEAD[x] = AlgorithmCategory.MAC
for x in BLOCK_CIPHER_MODES:
CATEGORY_FROM_HEAD[x] = AlgorithmCategory.CIPHER
for x in BLOCK_AEAD_MODES:
CATEGORY_FROM_HEAD[x] = AlgorithmCategory.AEAD
def determine_category(self, expr: str, head: str) -> AlgorithmCategory:
"""Return the category of the given algorithm expression.
This function does not attempt to detect invalid inputs.
"""
prefix = head
while prefix:
if prefix in self.CATEGORY_FROM_HEAD:
return self.CATEGORY_FROM_HEAD[prefix]
if re.match(r'.*[0-9]\Z', prefix):
prefix = re.sub(r'_*[0-9]+\Z', r'', prefix)
else:
prefix = re.sub(r'_*[^_]*\Z', r'', prefix)
raise AlgorithmNotRecognized(expr)
@staticmethod
def determine_wildcard(expr) -> bool:
"""Whether the given algorithm expression is a wildcard.
This function does not attempt to detect invalid inputs.
"""
if re.search(r'\bPSA_ALG_ANY_HASH\b', expr):
return True
if re.search(r'_AT_LEAST_', expr):
return True
return False
def __init__(self, expr: str) -> None:
"""Analyze an algorithm value.
The algorithm must be expressed as a C expression containing only
calls to PSA algorithm constructor macros and numeric literals.
This class is only programmed to handle valid expressions. Invalid
expressions may result in exceptions or in nonsensical results.
"""
self.expression = re.sub(r'\s+', r'', expr)
self.base_expression = self.determine_base(self.expression)
self.head = self.determine_head(self.base_expression)
self.category = self.determine_category(self.base_expression, self.head)
self.is_wildcard = self.determine_wildcard(self.expression)
def get_key_agreement_derivation(self) -> Optional[str]:
"""For a combined key agreement and key derivation algorithm, get the derivation part.
For anything else, return None.
"""
if self.category != AlgorithmCategory.KEY_AGREEMENT:
return None
m = re.match(r'PSA_ALG_KEY_AGREEMENT\(\w+,\s*(.*)\)\Z', self.expression)
if not m:
return None
kdf_alg = m.group(1)
# Assume kdf_alg is either a valid KDF or 0.
if re.match(r'(?:0[Xx])?0+\s*\Z', kdf_alg):
return None
return kdf_alg
KEY_DERIVATIONS_INCOMPATIBLE_WITH_AGREEMENT = frozenset([
'PSA_ALG_TLS12_ECJPAKE_TO_PMS', # secret input in specific format
])
def is_valid_key_agreement_with_derivation(self) -> bool:
"""Whether this is a valid combined key agreement and key derivation algorithm."""
kdf_alg = self.get_key_agreement_derivation()
if kdf_alg is None:
return False
return kdf_alg not in self.KEY_DERIVATIONS_INCOMPATIBLE_WITH_AGREEMENT
def is_invalid_key_agreement_with_derivation(self) -> bool:
"""Whether this is an invalid combined key agreement and key derivation algorithm."""
kdf_alg = self.get_key_agreement_derivation()
if kdf_alg is None:
return False
return kdf_alg in self.KEY_DERIVATIONS_INCOMPATIBLE_WITH_AGREEMENT
def short_expression(self, level: int = 0) -> str:
"""Abbreviate the expression, keeping it human-readable.
See `crypto_knowledge.short_expression`.
"""
return short_expression(self.expression, level=level)
HASH_LENGTH = {
'PSA_ALG_MD5': 16,
'PSA_ALG_SHA_1': 20,
}
HASH_LENGTH_BITS_RE = re.compile(r'([0-9]+)\Z')
@classmethod
def hash_length(cls, alg: str) -> int:
"""The length of the given hash algorithm, in bytes."""
if alg in cls.HASH_LENGTH:
return cls.HASH_LENGTH[alg]
m = cls.HASH_LENGTH_BITS_RE.search(alg)
if m:
return int(m.group(1)) // 8
raise ValueError('Unknown hash length for ' + alg)
PERMITTED_TAG_LENGTHS = {
'PSA_ALG_CCM': frozenset([4, 6, 8, 10, 12, 14, 16]),
'PSA_ALG_CHACHA20_POLY1305': frozenset([16]),
'PSA_ALG_GCM': frozenset([4, 8, 12, 13, 14, 15, 16]),
}
MAC_LENGTH = {
'PSA_ALG_CBC_MAC': 16, # actually the block cipher length
'PSA_ALG_CMAC': 16, # actually the block cipher length
}
HMAC_RE = re.compile(r'PSA_ALG_HMAC\((.*)\)\Z')
@classmethod
def permitted_truncations(cls, base: str) -> FrozenSet[int]:
"""Permitted output lengths for the given MAC or AEAD base algorithm.
For a MAC algorithm, this is the set of truncation lengths that
Mbed TLS supports.
For an AEAD algorithm, this is the set of truncation lengths that
are permitted by the algorithm specification.
"""
if base in cls.PERMITTED_TAG_LENGTHS:
return cls.PERMITTED_TAG_LENGTHS[base]
max_length = cls.MAC_LENGTH.get(base, None)
if max_length is None:
m = cls.HMAC_RE.match(base)
if m:
max_length = cls.hash_length(m.group(1))
if max_length is None:
raise ValueError('Unknown permitted lengths for ' + base)
return frozenset(range(4, max_length + 1))
TRUNCATED_ALG_RE = re.compile(
r'(?P<face>PSA_ALG_(?:AEAD_WITH_SHORTENED_TAG|TRUNCATED_MAC))'
r'\((?P<base>.*),'
r'(?P<length>0[Xx][0-9A-Fa-f]+|[1-9][0-9]*|0[0-7]*)[LUlu]*\)\Z')
def is_invalid_truncation(self) -> bool:
"""False for a MAC or AEAD algorithm truncated to an invalid length.
True for a MAC or AEAD algorithm truncated to a valid length or to
a length that cannot be determined. True for anything other than
a truncated MAC or AEAD.
"""
m = self.TRUNCATED_ALG_RE.match(self.expression)
if m:
base = m.group('base')
to_length = int(m.group('length'), 0)
permitted_lengths = self.permitted_truncations(base)
if to_length not in permitted_lengths:
return True
return False
def is_valid_for_operation(self) -> bool:
"""Whether this algorithm construction is valid for an operation.
This function assumes that the algorithm is constructed in a
"grammatically" correct way, and only rejects semantically invalid
combinations.
"""
if self.is_wildcard:
return False
if self.is_invalid_truncation():
return False
return True
def can_do(self, category: AlgorithmCategory) -> bool:
"""Whether this algorithm can perform operations in the given category.
"""
if category == self.category:
return True
if category == AlgorithmCategory.KEY_DERIVATION and \
self.is_valid_key_agreement_with_derivation():
return True
return False
def usage_flags(self, public: bool = False) -> List[str]:
"""The list of usage flags describing operations that can perform this algorithm.
If public is true, only return public-key operations, not private-key operations.
"""
if self.category == AlgorithmCategory.HASH:
flags = []
elif self.category == AlgorithmCategory.MAC:
flags = ['SIGN_HASH', 'SIGN_MESSAGE',
'VERIFY_HASH', 'VERIFY_MESSAGE']
elif self.category == AlgorithmCategory.CIPHER or \
self.category == AlgorithmCategory.AEAD:
flags = ['DECRYPT', 'ENCRYPT']
elif self.category == AlgorithmCategory.SIGN:
flags = ['VERIFY_HASH', 'VERIFY_MESSAGE']
if not public:
flags += ['SIGN_HASH', 'SIGN_MESSAGE']
elif self.category == AlgorithmCategory.ASYMMETRIC_ENCRYPTION:
flags = ['ENCRYPT']
if not public:
flags += ['DECRYPT']
elif self.category == AlgorithmCategory.KEY_DERIVATION or \
self.category == AlgorithmCategory.KEY_AGREEMENT:
flags = ['DERIVE']
else:
raise AlgorithmNotRecognized(self.expression)
return ['PSA_KEY_USAGE_' + flag for flag in flags]

View File

@ -1,875 +0,0 @@
"""Framework classes for generation of ecp test cases."""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
from typing import List
from . import test_data_generation
from . import bignum_common
class EcpTarget(test_data_generation.BaseTarget):
#pylint: disable=abstract-method, too-few-public-methods
"""Target for ecp test case generation."""
target_basename = 'test_suite_ecp.generated'
class EcpP192R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P192 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p192_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP192R1_ENABLED",
"MBEDTLS_ECP_NIST_OPTIM"]
moduli = ["fffffffffffffffffffffffffffffffeffffffffffffffff"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"fffffffffffffffffffffffffffffffefffffffffffffffe",
# Modulus + 1
"ffffffffffffffffffffffffffffffff0000000000000000",
# 2^192 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P192 multiplication result
("fffffffffffffffffffffffffffffffdfffffffffffffffc"
"000000000000000100000000000000040000000000000004"),
# Generate an overflow during reduction
("00000000000000000000000000000001ffffffffffffffff"
"ffffffffffffffffffffffffffffffff0000000000000000"),
# Generate an overflow during carry reduction
("ffffffffffffffff00000000000000010000000000000000"
"fffffffffffffffeffffffffffffffff0000000000000000"),
# First 8 number generated by random.getrandbits(384) - seed(2,2)
("cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
"177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("ffed9235288bc781ae66267594c9c9500925e4749b575bd1"
"3653f8dd9b1f282e4067c3584ee207f8da94e3e8ab73738f"),
("ef8acd128b4f2fc15f3f57ebf30b94fa82523e86feac7eb7"
"dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"
"defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2"),
("2d3d854e061b90303b08c6e33c7295782d6c797f8f7d9b78"
"2a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f1"
"5c14bc4a829e07b0829a48d422fe99a22c70501e533c9135"),
("97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561"
"867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2"
"721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"),
# Next 2 number generated by random.getrandbits(192)
"47733e847d718d733ff98ff387c56473a7a83ee0761ebfd2",
"cbd4d3e2d4dec9ef83f0be4e80371eb97f81375eecc1cb63"
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP192R1"] + args
class EcpP224R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P224 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p224_raw"
input_style = "arch_split"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP224R1_ENABLED",
"MBEDTLS_ECP_NIST_OPTIM"]
moduli = ["ffffffffffffffffffffffffffffffff000000000000000000000001"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"ffffffffffffffffffffffffffffffff000000000000000000000000",
# Modulus + 1
"ffffffffffffffffffffffffffffffff000000000000000000000002",
# 2^224 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P224 multiplication result
("fffffffffffffffffffffffffffffffe000000000000000000000000"
"00000001000000000000000000000000000000000000000000000000"),
# Generate an overflow during reduction
("00000000000000000000000000010000000070000000002000001000"
"ffffffffffff9fffffffffe00000efff000070000000002000001003"),
# Generate an underflow during reduction
("00000001000000000000000000000000000000000000000000000000"
"00000000000dc0000000000000000001000000010000000100000003"),
# First 8 number generated by random.getrandbits(448) - seed(2,2)
("da94e3e8ab73738fcf1822ffbc6887782b491044d5e341245c6e4337"
"15ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("cdbd47d364be8049a372db8f6e405d93ffed9235288bc781ae662675"
"94c9c9500925e4749b575bd13653f8dd9b1f282e4067c3584ee207f8"),
("defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2ef8acd12"
"8b4f2fc15f3f57ebf30b94fa82523e86feac7eb7dc38f519b91751da"),
("2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a6"
"6148a86fe8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"),
("8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0829a48d4"
"22fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"),
("97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561867e5e15"
"bc01bfce6a27e0dfcbf8754472154e76e4c11ab2fec3f6b32e8d4b8a"),
("a7a83ee0761ebfd2bd143fa9b714210c665d7435c1066932f4767f26"
"294365b2721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"),
("74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e"
"80371eb97f81375eecc1cb6347733e847d718d733ff98ff387c56473"),
# Next 2 number generated by random.getrandbits(224)
"eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a",
"f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f258ebdbfe3"
]
@property
def arg_a(self) -> str:
limbs = 2 * bignum_common.bits_to_limbs(224, self.bits_in_limb)
hex_digits = bignum_common.hex_digits_for_limb(limbs, self.bits_in_limb)
return super().format_arg('{:x}'.format(self.int_a)).zfill(hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP224R1"] + args
class EcpP256R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P256 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p256_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP256R1_ENABLED",
"MBEDTLS_ECP_NIST_OPTIM"]
moduli = ["ffffffff00000001000000000000000000000000ffffffffffffffffffffffff"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"ffffffff00000001000000000000000000000000fffffffffffffffffffffffe",
# Modulus + 1
"ffffffff00000001000000000000000000000001000000000000000000000000",
# 2^256 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P256 multiplication result
("fffffffe00000002fffffffe0000000100000001fffffffe00000001fffffffc"
"00000003fffffffcfffffffffffffffffffffffc000000000000000000000004"),
# Generate an overflow during reduction
("0000000000000000000000010000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000ffffffff"),
# Generate an underflow during reduction
("0000000000000000000000000000000000000000000000000000000000000010"
"ffffffff00000000000000000000000000000000000000000000000000000000"),
# Generate an overflow during carry reduction
("aaaaaaaa00000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000aaaaaaacaaaaaaaaaaaaaaaa00000000"),
# Generate an underflow during carry reduction
("000000000000000000000001ffffffff00000000000000000000000000000000"
"0000000000000000000000000000000000000002000000020000000100000002"),
# First 8 number generated by random.getrandbits(512) - seed(2,2)
("4067c3584ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("82523e86feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"
"ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd9b1f282e"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045defc044a09325626"
"e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57ebf30b94fa"),
("829a48d422fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"
"2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("e89204e2e8168561867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"
"fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2721dea3bf63f23d0"
"dbe53fcafb2147df5ca495fa5a91c89b97eeab64ca2ce6bc5d3fd983c34c769f"),
("74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e80371eb9"
"7f81375eecc1cb6347733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d08f1bb2531d6460f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"
"8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"),
# Next 2 number generated by random.getrandbits(256)
"c5e2486c44a4a8f69dc8db48e86ec9c6e06f291b2a838af8d5c44a4eb3172062",
"d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f87777ad1f45ae9500ec9"
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP256R1"] + args
class EcpP384R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P384 fast reduction."""
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p384_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP384R1_ENABLED",
"MBEDTLS_ECP_NIST_OPTIM"]
moduli = [("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff0000000000000000ffffffff")
] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff0000000000000000fffffffe"),
# Modulus + 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff000000000000000100000000"),
# 2^384 - 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffff"),
# Maximum canonical P384 multiplication result
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffdfffffffe0000000000000001fffffffc"
"000000000000000000000000000000010000000200000000"
"fffffffe000000020000000400000000fffffffc00000004"),
# Testing with overflow in A(12) + A(21) + A(20);
("497811378624857a2c2af60d70583376545484cfae5c812f"
"e2999fc1abb51d18b559e8ca3b50aaf263fdf8f24bdfb98f"
"ffffffff20e65bf9099e4e73a5e8b517cf4fbeb8fd1750fd"
"ae6d43f2e53f82d5ffffffffffffffffcc6f1e06111c62e0"),
# Testing with underflow in A(13) + A(22) + A(23) - A(12) - A(20);
("dfdd25e96777406b3c04b8c7b406f5fcf287e1e576003a09"
"2852a6fbe517f2712b68abef41dbd35183a0614fb7222606"
"ffffffff84396eee542f18a9189d94396c784059c17a9f18"
"f807214ef32f2f10ffffffff8a77fac20000000000000000"),
# Testing with overflow in A(23) + A(20) + A(19) - A(22);
("783753f8a5afba6c1862eead1deb2fcdd907272be3ffd185"
"42b24a71ee8b26cab0aa33513610ff973042bbe1637cc9fc"
"99ad36c7f703514572cf4f5c3044469a8f5be6312c19e5d3"
"f8fc1ac6ffffffffffffffff8c86252400000000ffffffff"),
# Testing with underflow in A(23) + A(20) + A(19) - A(22);
("65e1d2362fce922663b7fd517586e88842a9b4bd092e93e6"
"251c9c69f278cbf8285d99ae3b53da5ba36e56701e2b17c2"
"25f1239556c5f00117fa140218b46ebd8e34f50d0018701f"
"a8a0a5cc00000000000000004410bcb4ffffffff00000000"),
# Testing the second round of carry reduction
("000000000000000000000000ffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffff0000000000000000"
"0000000000000000ffffffff000000000000000000000001"
"00000000000000000000000000000000ffffffff00000001"),
# First 8 number generated by random.getrandbits(768) - seed(2,2)
("ffed9235288bc781ae66267594c9c9500925e4749b575bd1"
"3653f8dd9b1f282e4067c3584ee207f8da94e3e8ab73738f"
"cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
"177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"
"defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2"
"ef8acd128b4f2fc15f3f57ebf30b94fa82523e86feac7eb7"
"dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f1"
"5c14bc4a829e07b0829a48d422fe99a22c70501e533c9135"
"2d3d854e061b90303b08c6e33c7295782d6c797f8f7d9b78"
"2a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2"
"721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"
"97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561"
"867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4"
"e73695c3e652c71a74667bffe202849da9643a295a9ac6de"
"cbd4d3e2d4dec9ef83f0be4e80371eb97f81375eecc1cb63"
"47733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f8777"
"7ad1f45ae9500ec9c5e2486c44a4a8f69dc8db48e86ec9c6"
"e06f291b2a838af8d5c44a4eb3172062d08f1bb2531d6460"
"f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"),
("0227eeb7b9d7d01f5769da05d205bbfcc8c69069134bccd3"
"e1cf4f589f8e4ce0af29d115ef24bd625dd961e6830b54fa"
"7d28f93435339774bb1e386c4fd5079e681b8f5896838b76"
"9da59b74a6c3181c81e220df848b1df78feb994a81167346"),
("d322a7353ead4efe440e2b4fda9c025a22f1a83185b98f5f"
"c11e60de1b343f52ea748db9e020307aaeb6db2c3a038a70"
"9779ac1f45e9dd320c855fdfa7251af0930cdbd30f0ad2a8"
"1b2d19a2beaa14a7ff3fe32a30ffc4eed0a7bd04e85bfcdd"),
# Next 2 number generated by random.getrandbits(384)
("5c3747465cc36c270e8a35b10828d569c268a20eb78ac332"
"e5e138e26c4454b90f756132e16dce72f18e859835e1f291"),
("eb2b5693babb7fbb0a76c196067cfdcb11457d9cf45e2fa0"
"1d7f4275153924800600571fac3a5b263fdf57cd2c006497")
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP384R1"] + args
class EcpP521R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P521 fast reduction."""
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p521_raw"
input_style = "arch_split"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP521R1_ENABLED",
"MBEDTLS_ECP_NIST_OPTIM"]
moduli = [("01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe"),
# Modulus + 1
("020000000000000000000000000000000000000000000000000000000000000000"
"000000000000000000000000000000000000000000000000000000000000000000"),
# Maximum canonical P521 multiplication result
("0003ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffff800"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000004"),
# Test case for overflow during addition
("0001efffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"000001ef"
"0000000000000000000000000000000000000000000000000000000000000000"
"000000000000000000000000000000000000000000000000000000000f000000"),
# First 8 number generated by random.getrandbits(1042) - seed(2,2)
("0003cc2e82523e86feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f"
"6e405d93ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd"
"9b1f282e"
"4067c3584ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("00017052829e07b0829a48d422fe99a22c70501e533c91352d3d854e061b9030"
"3b08c6e33c7295782d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c5055"
"6c71c4a6"
"6148a86fe8624fab5186ee32ee8d7ee9770348a05d300cb90706a045defc044a"
"09325626e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57eb"),
("00021f15a7a83ee0761ebfd2bd143fa9b714210c665d7435c1066932f4767f26"
"294365b2721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b97eeab64"
"ca2ce6bc"
"5d3fd983c34c769fe89204e2e8168561867e5e15bc01bfce6a27e0dfcbf87544"
"72154e76e4c11ab2fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f1"),
("000381bc2a838af8d5c44a4eb3172062d08f1bb2531d6460f0caeef038c89b38"
"a8acb5137c9260dc74e088a9b9492f258ebdbfe3eb9ac688b9d39cca91551e82"
"59cc60b1"
"7604e4b4e73695c3e652c71a74667bffe202849da9643a295a9ac6decbd4d3e2"
"d4dec9ef83f0be4e80371eb97f81375eecc1cb6347733e847d718d733ff98ff3"),
("00034816c8c69069134bccd3e1cf4f589f8e4ce0af29d115ef24bd625dd961e6"
"830b54fa7d28f93435339774bb1e386c4fd5079e681b8f5896838b769da59b74"
"a6c3181c"
"81e220df848b1df78feb994a81167346d4c0dca8b4c9e755cc9c3adcf515a823"
"4da4daeb4f3f87777ad1f45ae9500ec9c5e2486c44a4a8f69dc8db48e86ec9c6"),
("000397846c4454b90f756132e16dce72f18e859835e1f291d322a7353ead4efe"
"440e2b4fda9c025a22f1a83185b98f5fc11e60de1b343f52ea748db9e020307a"
"aeb6db2c"
"3a038a709779ac1f45e9dd320c855fdfa7251af0930cdbd30f0ad2a81b2d19a2"
"beaa14a7ff3fe32a30ffc4eed0a7bd04e85bfcdd0227eeb7b9d7d01f5769da05"),
("00002c3296e6bc4d62b47204007ee4fab105d83e85e951862f0981aebc1b00d9"
"2838e766ef9b6bf2d037fe2e20b6a8464174e75a5f834da70569c018eb2b5693"
"babb7fbb"
"0a76c196067cfdcb11457d9cf45e2fa01d7f4275153924800600571fac3a5b26"
"3fdf57cd2c0064975c3747465cc36c270e8a35b10828d569c268a20eb78ac332"),
("00009d23b4917fc09f20dbb0dcc93f0e66dfe717c17313394391b6e2e6eacb0f"
"0bb7be72bd6d25009aeb7fa0c4169b148d2f527e72daf0a54ef25c0707e33868"
"7d1f7157"
"5653a45c49390aa51cf5192bbf67da14be11d56ba0b4a2969d8055a9f03f2d71"
"581d8e830112ff0f0948eccaf8877acf26c377c13f719726fd70bddacb4deeec"),
# Next 2 number generated by random.getrandbits(521)
("12b84ae65e920a63ac1f2b64df6dff07870c9d531ae72a47403063238da1a1fe"
"3f9d6a179fa50f96cd4aff9261aa92c0e6f17ec940639bc2ccdf572df00790813e3"),
("166049dd332a73fa0b26b75196cf87eb8a09b27ec714307c68c425424a1574f1"
"eedf5b0f16cdfdb839424d201e653f53d6883ca1c107ca6e706649889c0c7f38608")
]
@property
def arg_a(self) -> str:
# Number of limbs: 2 * N
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP521R1"] + args
class EcpP192K1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P192K1 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p192k1_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP192K1_ENABLED"]
moduli = ["fffffffffffffffffffffffffffffffffffffffeffffee37"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"fffffffffffffffffffffffffffffffffffffffeffffee36",
# Modulus + 1
"fffffffffffffffffffffffffffffffffffffffeffffee38",
# 2^192 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P192K1 multiplication result
("fffffffffffffffffffffffffffffffffffffffdffffdc6c"
"0000000000000000000000000000000100002394013c7364"),
# Test case for overflow during addition
("00000007ffff71b809e27dd832cfd5e04d9d2dbb9f8da217"
"0000000000000000000000000000000000000000520834f0"),
# First 8 number generated by random.getrandbits(384) - seed(2,2)
("cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
"177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("ffed9235288bc781ae66267594c9c9500925e4749b575bd1"
"3653f8dd9b1f282e4067c3584ee207f8da94e3e8ab73738f"),
("ef8acd128b4f2fc15f3f57ebf30b94fa82523e86feac7eb7"
"dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"
"defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2"),
("2d3d854e061b90303b08c6e33c7295782d6c797f8f7d9b78"
"2a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f1"
"5c14bc4a829e07b0829a48d422fe99a22c70501e533c9135"),
("97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561"
"867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2"
"721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"),
# Next 2 number generated by random.getrandbits(192)
"47733e847d718d733ff98ff387c56473a7a83ee0761ebfd2",
"cbd4d3e2d4dec9ef83f0be4e80371eb97f81375eecc1cb63"
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self):
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP192K1"] + args
class EcpP224K1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P224 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p224k1_raw"
input_style = "arch_split"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP224K1_ENABLED"]
moduli = ["fffffffffffffffffffffffffffffffffffffffffffffffeffffe56d"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"fffffffffffffffffffffffffffffffffffffffffffffffeffffe56c",
# Modulus + 1
"fffffffffffffffffffffffffffffffffffffffffffffffeffffe56e",
# 2^224 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P224K1 multiplication result
("fffffffffffffffffffffffffffffffffffffffffffffffdffffcad8"
"00000000000000000000000000000000000000010000352802c26590"),
# Test case for overflow during addition
("0000007ffff2b68161180fd8cd92e1a109be158a19a99b1809db8032"
"0000000000000000000000000000000000000000000000000bf04f49"),
# First 8 number generated by random.getrandbits(448) - seed(2,2)
("da94e3e8ab73738fcf1822ffbc6887782b491044d5e341245c6e4337"
"15ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("cdbd47d364be8049a372db8f6e405d93ffed9235288bc781ae662675"
"94c9c9500925e4749b575bd13653f8dd9b1f282e4067c3584ee207f8"),
("defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2ef8acd12"
"8b4f2fc15f3f57ebf30b94fa82523e86feac7eb7dc38f519b91751da"),
("2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a6"
"6148a86fe8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"),
("8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0829a48d4"
"22fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"),
("97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561867e5e15"
"bc01bfce6a27e0dfcbf8754472154e76e4c11ab2fec3f6b32e8d4b8a"),
("a7a83ee0761ebfd2bd143fa9b714210c665d7435c1066932f4767f26"
"294365b2721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"),
("74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e"
"80371eb97f81375eecc1cb6347733e847d718d733ff98ff387c56473"),
# Next 2 number generated by random.getrandbits(224)
("eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"),
("f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f258ebdbfe3"),
]
@property
def arg_a(self) -> str:
limbs = 2 * bignum_common.bits_to_limbs(224, self.bits_in_limb)
hex_digits = bignum_common.hex_digits_for_limb(limbs, self.bits_in_limb)
return super().format_arg('{:x}'.format(self.int_a)).zfill(hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self):
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP224K1"] + args
class EcpP256K1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P256 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p256k1_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_SECP256K1_ENABLED"]
moduli = ["fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
# Modulus + 1
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30",
# 2^256 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P256K1 multiplication result
("fffffffffffffffffffffffffffffffffffffffffffffffffffffffdfffff85c"
"000000000000000000000000000000000000000000000001000007a4000e9844"),
# Test case for overflow during addition
("0000fffffc2f000e90a0c86a0a63234e5ba641f43a7e4aecc4040e67ec850562"
"00000000000000000000000000000000000000000000000000000000585674fd"),
# Test case for overflow during addition
("0000fffffc2f000e90a0c86a0a63234e5ba641f43a7e4aecc4040e67ec850562"
"00000000000000000000000000000000000000000000000000000000585674fd"),
# First 8 number generated by random.getrandbits(512) - seed(2,2)
("4067c3584ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("82523e86feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"
"ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd9b1f282e"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045defc044a09325626"
"e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57ebf30b94fa"),
("829a48d422fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"
"2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("e89204e2e8168561867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"
"fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2721dea3bf63f23d0"
"dbe53fcafb2147df5ca495fa5a91c89b97eeab64ca2ce6bc5d3fd983c34c769f"),
("74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e80371eb9"
"7f81375eecc1cb6347733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d08f1bb2531d6460f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"
"8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"),
# Next 2 number generated by random.getrandbits(256)
("c5e2486c44a4a8f69dc8db48e86ec9c6e06f291b2a838af8d5c44a4eb3172062"),
("d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f87777ad1f45ae9500ec9"),
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self):
args = super().arguments()
return ["MBEDTLS_ECP_DP_SECP256K1"] + args
class EcpP255Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP 25519 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "mbedtls_ecp_mod_p255_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_CURVE25519_ENABLED"]
moduli = [("7fffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffed")] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"),
# Modulus + 1
("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee"),
# 2^255 - 1
("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
# Maximum canonical P255 multiplication result
("3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"
"0000000000000000000000000000000000000000000000000000000000000190"),
# First 8 number generated by random.getrandbits(510) - seed(2,2)
("1019f0d64ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("20948fa1feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"
"ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd9b1f282e"),
("3a1893ea5186ee32ee8d7ee9770348a05d300cb90706a045defc044a09325626"
"e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57ebf30b94fa"),
("20a6923522fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"
"2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("3a248138e8168561867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"
"fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0"),
("2f450feab714210c665d7435c1066932f4767f26294365b2721dea3bf63f23d0"
"dbe53fcafb2147df5ca495fa5a91c89b97eeab64ca2ce6bc5d3fd983c34c769f"),
("1d199effe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e80371eb9"
"7f81375eecc1cb6347733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("3423c6ec531d6460f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"
"8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"),
# Next 2 number generated by random.getrandbits(255)
("62f1243644a4a8f69dc8db48e86ec9c6e06f291b2a838af8d5c44a4eb3172062"),
("6a606e54b4c9e755cc9c3adcf515a8234da4daeb4f3f87777ad1f45ae9500ec9"),
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self)-> List[str]:
args = super().arguments()
return ["MBEDTLS_ECP_DP_CURVE25519"] + args
class EcpP448Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P448 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p_generic_raw"
test_name = "ecp_mod_p448_raw"
input_style = "fixed"
arity = 1
dependencies = ["MBEDTLS_ECP_DP_CURVE448_ENABLED"]
moduli = [("fffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff")] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("fffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffe"),
# Modulus + 1
("ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"00000000000000000000000000000000000000000000000000000000"),
# 2^448 - 1
("ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
# Maximum canonical P448 multiplication result
("fffffffffffffffffffffffffffffffffffffffffffffffffffffffd"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffd"
"00000000000000000000000000000000000000000000000000000004"
"00000000000000000000000000000000000000000000000000000004"),
# First 8 number generated by random.getrandbits(896) - seed(2,2)
("74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e"
"80371eb97f81375eecc1cb6347733e847d718d733ff98ff387c56473"
"a7a83ee0761ebfd2bd143fa9b714210c665d7435c1066932f4767f26"
"294365b2721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"),
("4da4daeb4f3f87777ad1f45ae9500ec9c5e2486c44a4a8f69dc8db48"
"e86ec9c6e06f291b2a838af8d5c44a4eb3172062d08f1bb2531d6460"
"f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f258ebdbfe3"
"eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"),
("bc1b00d92838e766ef9b6bf2d037fe2e20b6a8464174e75a5f834da7"
"0569c018eb2b5693babb7fbb0a76c196067cfdcb11457d9cf45e2fa0"
"1d7f4275153924800600571fac3a5b263fdf57cd2c0064975c374746"
"5cc36c270e8a35b10828d569c268a20eb78ac332e5e138e26c4454b9"),
("8d2f527e72daf0a54ef25c0707e338687d1f71575653a45c49390aa5"
"1cf5192bbf67da14be11d56ba0b4a2969d8055a9f03f2d71581d8e83"
"0112ff0f0948eccaf8877acf26c377c13f719726fd70bddacb4deeec"
"0b0c995e96e6bc4d62b47204007ee4fab105d83e85e951862f0981ae"),
("84ae65e920a63ac1f2b64df6dff07870c9d531ae72a47403063238da"
"1a1fe3f9d6a179fa50f96cd4aff9261aa92c0e6f17ec940639bc2ccd"
"f572df00790813e32748dd1db4917fc09f20dbb0dcc93f0e66dfe717"
"c17313394391b6e2e6eacb0f0bb7be72bd6d25009aeb7fa0c4169b14"),
("2bb3b36f29421c4021b7379f0897246a40c270b00e893302aba9e7b8"
"23fc5ad2f58105748ed5d1b7b310b730049dd332a73fa0b26b75196c"
"f87eb8a09b27ec714307c68c425424a1574f1eedf5b0f16cdfdb8394"
"24d201e653f53d6883ca1c107ca6e706649889c0c7f3860895bfa813"),
("af3f5d7841b1256d5c1dc12fb5a1ae519fb8883accda6559caa538a0"
"9fc9370d3a6b86a7975b54a31497024640332b0612d4050771d7b14e"
"b6c004cc3b8367dc3f2bb31efe9934ad0809eae3ef232a32b5459d83"
"fbc46f1aea990e94821d46063b4dbf2ca294523d74115c86188b1044"),
("7430051376e31f5aab63ad02854efa600641b4fa37a47ce41aeffafc"
"3b45402ac02659fe2e87d4150511baeb198ababb1a16daff3da95cd2"
"167b75dfb948f82a8317cba01c75f67e290535d868a24b7f627f2855"
"09167d4126af8090013c3273c02c6b9586b4625b475b51096c4ad652"),
# Corner case which causes maximum overflow
("f4ae65e920a63ac1f2b64df6dff07870c9d531ae72a47403063238da1"
"a1fe3f9d6a179fa50f96cd4aff9261aa92c0e6f17ec940639bc2ccd0B"
"519A16DF59C53E0D49B209200F878F362ACE518D5B8BFCF9CDC725E5E"
"01C06295E8605AF06932B5006D9E556D3F190E8136BF9C643D332"),
# Next 2 number generated by random.getrandbits(448)
("8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0829a48d4"
"22fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"),
("97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561867e5e15"
"bc01bfce6a27e0dfcbf8754472154e76e4c11ab2fec3f6b32e8d4b8a"),
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
def arguments(self):
args = super().arguments()
return ["MBEDTLS_ECP_DP_CURVE448"] + args

View File

@ -1,46 +0,0 @@
"""Auxiliary functions used for logging module.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import logging
import sys
def configure_logger(
logger: logging.Logger,
log_format="[%(levelname)s]: %(message)s",
split_level=logging.WARNING
) -> None:
"""
Configure the logging.Logger instance so that:
- Format is set to any log_format.
Default: "[%(levelname)s]: %(message)s"
- loglevel >= split_level are printed to stderr.
- loglevel < split_level are printed to stdout.
Default: logging.WARNING
"""
class MaxLevelFilter(logging.Filter):
# pylint: disable=too-few-public-methods
def __init__(self, max_level, name=''):
super().__init__(name)
self.max_level = max_level
def filter(self, record: logging.LogRecord) -> bool:
return record.levelno <= self.max_level
log_formatter = logging.Formatter(log_format)
# set loglevel >= split_level to be printed to stderr
stderr_hdlr = logging.StreamHandler(sys.stderr)
stderr_hdlr.setLevel(split_level)
stderr_hdlr.setFormatter(log_formatter)
# set loglevel < split_level to be printed to stdout
stdout_hdlr = logging.StreamHandler(sys.stdout)
stdout_hdlr.addFilter(MaxLevelFilter(split_level - 1))
stdout_hdlr.setFormatter(log_formatter)
logger.addHandler(stderr_hdlr)
logger.addHandler(stdout_hdlr)

View File

@ -1,539 +0,0 @@
"""Collect macro definitions from header files.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import itertools
import re
from typing import Dict, IO, Iterable, Iterator, List, Optional, Pattern, Set, Tuple, Union
class ReadFileLineException(Exception):
def __init__(self, filename: str, line_number: Union[int, str]) -> None:
message = 'in {} at {}'.format(filename, line_number)
super(ReadFileLineException, self).__init__(message)
self.filename = filename
self.line_number = line_number
class read_file_lines:
# Dear Pylint, conventionally, a context manager class name is lowercase.
# pylint: disable=invalid-name,too-few-public-methods
"""Context manager to read a text file line by line.
```
with read_file_lines(filename) as lines:
for line in lines:
process(line)
```
is equivalent to
```
with open(filename, 'r') as input_file:
for line in input_file:
process(line)
```
except that if process(line) raises an exception, then the read_file_lines
snippet annotates the exception with the file name and line number.
"""
def __init__(self, filename: str, binary: bool = False) -> None:
self.filename = filename
self.file = None #type: Optional[IO[str]]
self.line_number = 'entry' #type: Union[int, str]
self.generator = None #type: Optional[Iterable[Tuple[int, str]]]
self.binary = binary
def __enter__(self) -> 'read_file_lines':
self.file = open(self.filename, 'rb' if self.binary else 'r')
self.generator = enumerate(self.file)
return self
def __iter__(self) -> Iterator[str]:
assert self.generator is not None
for line_number, content in self.generator:
self.line_number = line_number
yield content
self.line_number = 'exit'
def __exit__(self, exc_type, exc_value, exc_traceback) -> None:
if self.file is not None:
self.file.close()
if exc_type is not None:
raise ReadFileLineException(self.filename, self.line_number) \
from exc_value
class PSAMacroEnumerator:
"""Information about constructors of various PSA Crypto types.
This includes macro names as well as information about their arguments
when applicable.
This class only provides ways to enumerate expressions that evaluate to
values of the covered types. Derived classes are expected to populate
the set of known constructors of each kind, as well as populate
`self.arguments_for` for arguments that are not of a kind that is
enumerated here.
"""
#pylint: disable=too-many-instance-attributes
def __init__(self) -> None:
"""Set up an empty set of known constructor macros.
"""
self.statuses = set() #type: Set[str]
self.lifetimes = set() #type: Set[str]
self.locations = set() #type: Set[str]
self.persistence_levels = set() #type: Set[str]
self.algorithms = set() #type: Set[str]
self.ecc_curves = set() #type: Set[str]
self.dh_groups = set() #type: Set[str]
self.key_types = set() #type: Set[str]
self.key_usage_flags = set() #type: Set[str]
self.hash_algorithms = set() #type: Set[str]
self.mac_algorithms = set() #type: Set[str]
self.ka_algorithms = set() #type: Set[str]
self.kdf_algorithms = set() #type: Set[str]
self.pake_algorithms = set() #type: Set[str]
self.aead_algorithms = set() #type: Set[str]
self.sign_algorithms = set() #type: Set[str]
# macro name -> list of argument names
self.argspecs = {} #type: Dict[str, List[str]]
# argument name -> list of values
self.arguments_for = {
'mac_length': [],
'min_mac_length': [],
'tag_length': [],
'min_tag_length': [],
} #type: Dict[str, List[str]]
# Whether to include intermediate macros in enumerations. Intermediate
# macros serve as category headers and are not valid values of their
# type. See `is_internal_name`.
# Always false in this class, may be set to true in derived classes.
self.include_intermediate = False
def is_internal_name(self, name: str) -> bool:
"""Whether this is an internal macro. Internal macros will be skipped."""
if not self.include_intermediate:
if name.endswith('_BASE') or name.endswith('_NONE'):
return True
if '_CATEGORY_' in name:
return True
return name.endswith('_FLAG') or name.endswith('_MASK')
def gather_arguments(self) -> None:
"""Populate the list of values for macro arguments.
Call this after parsing all the inputs.
"""
self.arguments_for['hash_alg'] = sorted(self.hash_algorithms)
self.arguments_for['mac_alg'] = sorted(self.mac_algorithms)
self.arguments_for['ka_alg'] = sorted(self.ka_algorithms)
self.arguments_for['kdf_alg'] = sorted(self.kdf_algorithms)
self.arguments_for['aead_alg'] = sorted(self.aead_algorithms)
self.arguments_for['sign_alg'] = sorted(self.sign_algorithms)
self.arguments_for['curve'] = sorted(self.ecc_curves)
self.arguments_for['group'] = sorted(self.dh_groups)
self.arguments_for['persistence'] = sorted(self.persistence_levels)
self.arguments_for['location'] = sorted(self.locations)
self.arguments_for['lifetime'] = sorted(self.lifetimes)
@staticmethod
def _format_arguments(name: str, arguments: Iterable[str]) -> str:
"""Format a macro call with arguments.
The resulting format is consistent with
`InputsForTest.normalize_argument`.
"""
return name + '(' + ', '.join(arguments) + ')'
_argument_split_re = re.compile(r' *, *')
@classmethod
def _argument_split(cls, arguments: str) -> List[str]:
return re.split(cls._argument_split_re, arguments)
def distribute_arguments(self, name: str) -> Iterator[str]:
"""Generate macro calls with each tested argument set.
If name is a macro without arguments, just yield "name".
If name is a macro with arguments, yield a series of
"name(arg1,...,argN)" where each argument takes each possible
value at least once.
"""
try:
if name not in self.argspecs:
yield name
return
argspec = self.argspecs[name]
if argspec == []:
yield name + '()'
return
argument_lists = [self.arguments_for[arg] for arg in argspec]
arguments = [values[0] for values in argument_lists]
yield self._format_arguments(name, arguments)
# Dear Pylint, enumerate won't work here since we're modifying
# the array.
# pylint: disable=consider-using-enumerate
for i in range(len(arguments)):
for value in argument_lists[i][1:]:
arguments[i] = value
yield self._format_arguments(name, arguments)
arguments[i] = argument_lists[i][0]
except BaseException as e:
raise Exception('distribute_arguments({})'.format(name)) from e
def distribute_arguments_without_duplicates(
self, seen: Set[str], name: str
) -> Iterator[str]:
"""Same as `distribute_arguments`, but don't repeat seen results."""
for result in self.distribute_arguments(name):
if result not in seen:
seen.add(result)
yield result
def generate_expressions(self, names: Iterable[str]) -> Iterator[str]:
"""Generate expressions covering values constructed from the given names.
`names` can be any iterable collection of macro names.
For example:
* ``generate_expressions(['PSA_ALG_CMAC', 'PSA_ALG_HMAC'])``
generates ``'PSA_ALG_CMAC'`` as well as ``'PSA_ALG_HMAC(h)'`` for
every known hash algorithm ``h``.
* ``macros.generate_expressions(macros.key_types)`` generates all
key types.
"""
seen = set() #type: Set[str]
return itertools.chain(*(
self.distribute_arguments_without_duplicates(seen, name)
for name in names
))
class PSAMacroCollector(PSAMacroEnumerator):
"""Collect PSA crypto macro definitions from C header files.
"""
def __init__(self, include_intermediate: bool = False) -> None:
"""Set up an object to collect PSA macro definitions.
Call the read_file method of the constructed object on each header file.
* include_intermediate: if true, include intermediate macros such as
PSA_XXX_BASE that do not designate semantic values.
"""
super().__init__()
self.include_intermediate = include_intermediate
self.key_types_from_curve = {} #type: Dict[str, str]
self.key_types_from_group = {} #type: Dict[str, str]
self.algorithms_from_hash = {} #type: Dict[str, str]
@staticmethod
def algorithm_tester(name: str) -> str:
"""The predicate for whether an algorithm is built from the given constructor.
The given name must be the name of an algorithm constructor of the
form ``PSA_ALG_xxx`` which is used as ``PSA_ALG_xxx(yyy)`` to build
an algorithm value. Return the corresponding predicate macro which
is used as ``predicate(alg)`` to test whether ``alg`` can be built
as ``PSA_ALG_xxx(yyy)``. The predicate is usually called
``PSA_ALG_IS_xxx``.
"""
prefix = 'PSA_ALG_'
assert name.startswith(prefix)
midfix = 'IS_'
suffix = name[len(prefix):]
if suffix in ['DSA', 'ECDSA']:
midfix += 'RANDOMIZED_'
elif suffix == 'RSA_PSS':
suffix += '_STANDARD_SALT'
return prefix + midfix + suffix
def record_algorithm_subtype(self, name: str, expansion: str) -> None:
"""Record the subtype of an algorithm constructor.
Given a ``PSA_ALG_xxx`` macro name and its expansion, if the algorithm
is of a subtype that is tracked in its own set, add it to the relevant
set.
"""
# This code is very ad hoc and fragile. It should be replaced by
# something more robust.
if re.match(r'MAC(?:_|\Z)', name):
self.mac_algorithms.add(name)
elif re.match(r'KDF(?:_|\Z)', name):
self.kdf_algorithms.add(name)
elif re.search(r'0x020000[0-9A-Fa-f]{2}', expansion):
self.hash_algorithms.add(name)
elif re.search(r'0x03[0-9A-Fa-f]{6}', expansion):
self.mac_algorithms.add(name)
elif re.search(r'0x05[0-9A-Fa-f]{6}', expansion):
self.aead_algorithms.add(name)
elif re.search(r'0x09[0-9A-Fa-f]{2}0000', expansion):
self.ka_algorithms.add(name)
elif re.search(r'0x08[0-9A-Fa-f]{6}', expansion):
self.kdf_algorithms.add(name)
# "#define" followed by a macro name with either no parameters
# or a single parameter and a non-empty expansion.
# Grab the macro name in group 1, the parameter name if any in group 2
# and the expansion in group 3.
_define_directive_re = re.compile(r'\s*#\s*define\s+(\w+)' +
r'(?:\s+|\((\w+)\)\s*)' +
r'(.+)')
_deprecated_definition_re = re.compile(r'\s*MBEDTLS_DEPRECATED')
def read_line(self, line):
"""Parse a C header line and record the PSA identifier it defines if any.
This function analyzes lines that start with "#define PSA_"
(up to non-significant whitespace) and skips all non-matching lines.
"""
# pylint: disable=too-many-branches
m = re.match(self._define_directive_re, line)
if not m:
return
name, parameter, expansion = m.groups()
expansion = re.sub(r'/\*.*?\*/|//.*', r' ', expansion)
if parameter:
self.argspecs[name] = [parameter]
if re.match(self._deprecated_definition_re, expansion):
# Skip deprecated values, which are assumed to be
# backward compatibility aliases that share
# numerical values with non-deprecated values.
return
if self.is_internal_name(name):
# Macro only to build actual values
return
elif (name.startswith('PSA_ERROR_') or name == 'PSA_SUCCESS') \
and not parameter:
self.statuses.add(name)
elif name.startswith('PSA_KEY_TYPE_') and not parameter:
self.key_types.add(name)
elif name.startswith('PSA_KEY_TYPE_') and parameter == 'curve':
self.key_types_from_curve[name] = name[:13] + 'IS_' + name[13:]
elif name.startswith('PSA_KEY_TYPE_') and parameter == 'group':
self.key_types_from_group[name] = name[:13] + 'IS_' + name[13:]
elif name.startswith('PSA_ECC_FAMILY_') and not parameter:
self.ecc_curves.add(name)
elif name.startswith('PSA_DH_FAMILY_') and not parameter:
self.dh_groups.add(name)
elif name.startswith('PSA_ALG_') and not parameter:
if name in ['PSA_ALG_ECDSA_BASE',
'PSA_ALG_RSA_PKCS1V15_SIGN_BASE']:
# Ad hoc skipping of duplicate names for some numerical values
return
self.algorithms.add(name)
self.record_algorithm_subtype(name, expansion)
elif name.startswith('PSA_ALG_') and parameter == 'hash_alg':
self.algorithms_from_hash[name] = self.algorithm_tester(name)
elif name.startswith('PSA_KEY_USAGE_') and not parameter:
self.key_usage_flags.add(name)
else:
# Other macro without parameter
return
_nonascii_re = re.compile(rb'[^\x00-\x7f]+')
_continued_line_re = re.compile(rb'\\\r?\n\Z')
def read_file(self, header_file):
for line in header_file:
m = re.search(self._continued_line_re, line)
while m:
cont = next(header_file)
line = line[:m.start(0)] + cont
m = re.search(self._continued_line_re, line)
line = re.sub(self._nonascii_re, rb'', line).decode('ascii')
self.read_line(line)
class InputsForTest(PSAMacroEnumerator):
# pylint: disable=too-many-instance-attributes
"""Accumulate information about macros to test.
enumerate
This includes macro names as well as information about their arguments
when applicable.
"""
def __init__(self) -> None:
super().__init__()
self.all_declared = set() #type: Set[str]
# Identifier prefixes
self.table_by_prefix = {
'ERROR': self.statuses,
'ALG': self.algorithms,
'ECC_CURVE': self.ecc_curves,
'DH_GROUP': self.dh_groups,
'KEY_LIFETIME': self.lifetimes,
'KEY_LOCATION': self.locations,
'KEY_PERSISTENCE': self.persistence_levels,
'KEY_TYPE': self.key_types,
'KEY_USAGE': self.key_usage_flags,
} #type: Dict[str, Set[str]]
# Test functions
self.table_by_test_function = {
# Any function ending in _algorithm also gets added to
# self.algorithms.
'key_type': [self.key_types],
'block_cipher_key_type': [self.key_types],
'stream_cipher_key_type': [self.key_types],
'ecc_key_family': [self.ecc_curves],
'ecc_key_types': [self.ecc_curves],
'dh_key_family': [self.dh_groups],
'dh_key_types': [self.dh_groups],
'hash_algorithm': [self.hash_algorithms],
'mac_algorithm': [self.mac_algorithms],
'cipher_algorithm': [],
'hmac_algorithm': [self.mac_algorithms, self.sign_algorithms],
'aead_algorithm': [self.aead_algorithms],
'key_derivation_algorithm': [self.kdf_algorithms],
'key_agreement_algorithm': [self.ka_algorithms],
'asymmetric_signature_algorithm': [self.sign_algorithms],
'asymmetric_signature_wildcard': [self.algorithms],
'asymmetric_encryption_algorithm': [],
'pake_algorithm': [self.pake_algorithms],
'other_algorithm': [],
'lifetime': [self.lifetimes],
} #type: Dict[str, List[Set[str]]]
mac_lengths = [str(n) for n in [
1, # minimum expressible
4, # minimum allowed by policy
13, # an odd size in a plausible range
14, # an even non-power-of-two size in a plausible range
16, # same as full size for at least one algorithm
63, # maximum expressible
]]
self.arguments_for['mac_length'] += mac_lengths
self.arguments_for['min_mac_length'] += mac_lengths
aead_lengths = [str(n) for n in [
1, # minimum expressible
4, # minimum allowed by policy
13, # an odd size in a plausible range
14, # an even non-power-of-two size in a plausible range
16, # same as full size for at least one algorithm
63, # maximum expressible
]]
self.arguments_for['tag_length'] += aead_lengths
self.arguments_for['min_tag_length'] += aead_lengths
def add_numerical_values(self) -> None:
"""Add numerical values that are not supported to the known identifiers."""
# Sets of names per type
self.algorithms.add('0xffffffff')
self.ecc_curves.add('0xff')
self.dh_groups.add('0xff')
self.key_types.add('0xffff')
self.key_usage_flags.add('0x80000000')
# Hard-coded values for unknown algorithms
#
# These have to have values that are correct for their respective
# PSA_ALG_IS_xxx macros, but are also not currently assigned and are
# not likely to be assigned in the near future.
self.hash_algorithms.add('0x020000fe') # 0x020000ff is PSA_ALG_ANY_HASH
self.mac_algorithms.add('0x03007fff')
self.ka_algorithms.add('0x09fc0000')
self.kdf_algorithms.add('0x080000ff')
self.pake_algorithms.add('0x0a0000ff')
# For AEAD algorithms, the only variability is over the tag length,
# and this only applies to known algorithms, so don't test an
# unknown algorithm.
def get_names(self, type_word: str) -> Set[str]:
"""Return the set of known names of values of the given type."""
return {
'status': self.statuses,
'algorithm': self.algorithms,
'ecc_curve': self.ecc_curves,
'dh_group': self.dh_groups,
'key_type': self.key_types,
'key_usage': self.key_usage_flags,
}[type_word]
# Regex for interesting header lines.
# Groups: 1=macro name, 2=type, 3=argument list (optional).
_header_line_re = \
re.compile(r'#define +' +
r'(PSA_((?:(?:DH|ECC|KEY)_)?[A-Z]+)_\w+)' +
r'(?:\(([^\n()]*)\))?')
# Regex of macro names to exclude.
_excluded_name_re = re.compile(r'_(?:GET|IS|OF)_|_(?:BASE|FLAG|MASK)\Z')
# Additional excluded macros.
_excluded_names = set([
# Macros that provide an alternative way to build the same
# algorithm as another macro.
'PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG',
'PSA_ALG_FULL_LENGTH_MAC',
# Auxiliary macro whose name doesn't fit the usual patterns for
# auxiliary macros.
'PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE',
])
def parse_header_line(self, line: str) -> None:
"""Parse a C header line, looking for "#define PSA_xxx"."""
m = re.match(self._header_line_re, line)
if not m:
return
name = m.group(1)
self.all_declared.add(name)
if re.search(self._excluded_name_re, name) or \
name in self._excluded_names or \
self.is_internal_name(name):
return
dest = self.table_by_prefix.get(m.group(2))
if dest is None:
return
dest.add(name)
if m.group(3):
self.argspecs[name] = self._argument_split(m.group(3))
_nonascii_re = re.compile(rb'[^\x00-\x7f]+') #type: Pattern
def parse_header(self, filename: str) -> None:
"""Parse a C header file, looking for "#define PSA_xxx"."""
with read_file_lines(filename, binary=True) as lines:
for line in lines:
line = re.sub(self._nonascii_re, rb'', line).decode('ascii')
self.parse_header_line(line)
_macro_identifier_re = re.compile(r'[A-Z]\w+')
def generate_undeclared_names(self, expr: str) -> Iterable[str]:
for name in re.findall(self._macro_identifier_re, expr):
if name not in self.all_declared:
yield name
def accept_test_case_line(self, function: str, argument: str) -> bool:
#pylint: disable=unused-argument
undeclared = list(self.generate_undeclared_names(argument))
if undeclared:
raise Exception('Undeclared names in test case', undeclared)
return True
@staticmethod
def normalize_argument(argument: str) -> str:
"""Normalize whitespace in the given C expression.
The result uses the same whitespace as
` PSAMacroEnumerator.distribute_arguments`.
"""
return re.sub(r',', r', ', re.sub(r' +', r'', argument))
def add_test_case_line(self, function: str, argument: str) -> None:
"""Parse a test case data line, looking for algorithm metadata tests."""
sets = []
if function.endswith('_algorithm'):
sets.append(self.algorithms)
if function == 'key_agreement_algorithm' and \
argument.startswith('PSA_ALG_KEY_AGREEMENT('):
# We only want *raw* key agreement algorithms as such, so
# exclude ones that are already chained with a KDF.
# Keep the expression as one to test as an algorithm.
function = 'other_algorithm'
sets += self.table_by_test_function[function]
if self.accept_test_case_line(function, argument):
for s in sets:
s.add(self.normalize_argument(argument))
# Regex matching a *.data line containing a test function call and
# its arguments. The actual definition is partly positional, but this
# regex is good enough in practice.
_test_case_line_re = re.compile(r'(?!depends_on:)(\w+):([^\n :][^:\n]*)')
def parse_test_cases(self, filename: str) -> None:
"""Parse a test case file (*.data), looking for algorithm metadata tests."""
with read_file_lines(filename) as lines:
for line in lines:
m = re.match(self._test_case_line_re, line)
if m:
self.add_test_case_line(m.group(1), m.group(2))

View File

@ -1,161 +0,0 @@
"""Collect information about PSA cryptographic mechanisms.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import re
from collections import OrderedDict
from typing import FrozenSet, List, Optional
from . import macro_collector
class Information:
"""Gather information about PSA constructors."""
def __init__(self) -> None:
self.constructors = self.read_psa_interface()
@staticmethod
def remove_unwanted_macros(
constructors: macro_collector.PSAMacroEnumerator
) -> None:
# Mbed TLS does not support finite-field DSA.
# Don't attempt to generate any related test case.
constructors.key_types.discard('PSA_KEY_TYPE_DSA_KEY_PAIR')
constructors.key_types.discard('PSA_KEY_TYPE_DSA_PUBLIC_KEY')
def read_psa_interface(self) -> macro_collector.PSAMacroEnumerator:
"""Return the list of known key types, algorithms, etc."""
constructors = macro_collector.InputsForTest()
header_file_names = ['include/psa/crypto_values.h',
'include/psa/crypto_extra.h']
test_suites = ['tests/suites/test_suite_psa_crypto_metadata.data']
for header_file_name in header_file_names:
constructors.parse_header(header_file_name)
for test_cases in test_suites:
constructors.parse_test_cases(test_cases)
self.remove_unwanted_macros(constructors)
constructors.gather_arguments()
return constructors
def psa_want_symbol(name: str) -> str:
"""Return the PSA_WANT_xxx symbol associated with a PSA crypto feature."""
if name.startswith('PSA_'):
return name[:4] + 'WANT_' + name[4:]
else:
raise ValueError('Unable to determine the PSA_WANT_ symbol for ' + name)
def finish_family_dependency(dep: str, bits: int) -> str:
"""Finish dep if it's a family dependency symbol prefix.
A family dependency symbol prefix is a PSA_WANT_ symbol that needs to be
qualified by the key size. If dep is such a symbol, finish it by adjusting
the prefix and appending the key size. Other symbols are left unchanged.
"""
return re.sub(r'_FAMILY_(.*)', r'_\1_' + str(bits), dep)
def finish_family_dependencies(dependencies: List[str], bits: int) -> List[str]:
"""Finish any family dependency symbol prefixes.
Apply `finish_family_dependency` to each element of `dependencies`.
"""
return [finish_family_dependency(dep, bits) for dep in dependencies]
SYMBOLS_WITHOUT_DEPENDENCY = frozenset([
'PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG', # modifier, only in policies
'PSA_ALG_AEAD_WITH_SHORTENED_TAG', # modifier
'PSA_ALG_ANY_HASH', # only in policies
'PSA_ALG_AT_LEAST_THIS_LENGTH_MAC', # modifier, only in policies
'PSA_ALG_KEY_AGREEMENT', # chaining
'PSA_ALG_TRUNCATED_MAC', # modifier
])
def automatic_dependencies(*expressions: str) -> List[str]:
"""Infer dependencies of a test case by looking for PSA_xxx symbols.
The arguments are strings which should be C expressions. Do not use
string literals or comments as this function is not smart enough to
skip them.
"""
used = set()
for expr in expressions:
used.update(re.findall(r'PSA_(?:ALG|ECC_FAMILY|DH_FAMILY|KEY_TYPE)_\w+', expr))
used.difference_update(SYMBOLS_WITHOUT_DEPENDENCY)
return sorted(psa_want_symbol(name) for name in used)
# Define set of regular expressions and dependencies to optionally append
# extra dependencies for test case based on key description.
# Skip AES test cases which require 192- or 256-bit key
# if MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH defined
AES_128BIT_ONLY_DEP_REGEX = re.compile(r'AES\s(192|256)')
AES_128BIT_ONLY_DEP = ['!MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH']
# Skip AES/ARIA/CAMELLIA test cases which require decrypt operation in ECB mode
# if MBEDTLS_BLOCK_CIPHER_NO_DECRYPT enabled.
ECB_NO_PADDING_DEP_REGEX = re.compile(r'(AES|ARIA|CAMELLIA).*ECB_NO_PADDING')
ECB_NO_PADDING_DEP = ['!MBEDTLS_BLOCK_CIPHER_NO_DECRYPT']
DEPENDENCY_FROM_DESCRIPTION = OrderedDict()
DEPENDENCY_FROM_DESCRIPTION[AES_128BIT_ONLY_DEP_REGEX] = AES_128BIT_ONLY_DEP
DEPENDENCY_FROM_DESCRIPTION[ECB_NO_PADDING_DEP_REGEX] = ECB_NO_PADDING_DEP
def generate_deps_from_description(
description: str
) -> List[str]:
"""Return additional dependencies based on test case description and REGEX.
"""
dep_list = []
for regex, deps in DEPENDENCY_FROM_DESCRIPTION.items():
if re.search(regex, description):
dep_list += deps
return dep_list
# A temporary hack: at the time of writing, not all dependency symbols
# are implemented yet. Skip test cases for which the dependency symbols are
# not available. Once all dependency symbols are available, this hack must
# be removed so that a bug in the dependency symbols properly leads to a test
# failure.
def read_implemented_dependencies(filename: str) -> FrozenSet[str]:
return frozenset(symbol
for line in open(filename)
for symbol in re.findall(r'\bPSA_WANT_\w+\b', line))
_implemented_dependencies = None #type: Optional[FrozenSet[str]] #pylint: disable=invalid-name
def hack_dependencies_not_implemented(dependencies: List[str]) -> None:
global _implemented_dependencies #pylint: disable=global-statement,invalid-name
if _implemented_dependencies is None:
_implemented_dependencies = \
read_implemented_dependencies('include/psa/crypto_config.h')
if not all((dep.lstrip('!') in _implemented_dependencies or
not dep.lstrip('!').startswith('PSA_WANT'))
for dep in dependencies):
dependencies.append('DEPENDENCY_NOT_IMPLEMENTED_YET')
def tweak_key_pair_dependency(dep: str, usage: str):
"""
This helper function add the proper suffix to PSA_WANT_KEY_TYPE_xxx_KEY_PAIR
symbols according to the required usage.
"""
ret_list = list()
if dep.endswith('KEY_PAIR'):
if usage == "BASIC":
# BASIC automatically includes IMPORT and EXPORT for test purposes (see
# config_psa.h).
ret_list.append(re.sub(r'KEY_PAIR', r'KEY_PAIR_BASIC', dep))
ret_list.append(re.sub(r'KEY_PAIR', r'KEY_PAIR_IMPORT', dep))
ret_list.append(re.sub(r'KEY_PAIR', r'KEY_PAIR_EXPORT', dep))
elif usage == "GENERATE":
ret_list.append(re.sub(r'KEY_PAIR', r'KEY_PAIR_GENERATE', dep))
else:
# No replacement to do in this case
ret_list.append(dep)
return ret_list
def fix_key_pair_dependencies(dep_list: List[str], usage: str):
new_list = [new_deps
for dep in dep_list
for new_deps in tweak_key_pair_dependency(dep, usage)]
return new_list

View File

@ -1,206 +0,0 @@
"""Knowledge about the PSA key store as implemented in Mbed TLS.
Note that if you need to make a change that affects how keys are
stored, this may indicate that the key store is changing in a
backward-incompatible way! Think carefully about backward compatibility
before changing how test data is constructed or validated.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import re
import struct
from typing import Dict, List, Optional, Set, Union
import unittest
from . import c_build_helper
from . import build_tree
class Expr:
"""Representation of a C expression with a known or knowable numerical value."""
def __init__(self, content: Union[int, str]):
if isinstance(content, int):
digits = 8 if content > 0xffff else 4
self.string = '{0:#0{1}x}'.format(content, digits + 2)
self.value_if_known = content #type: Optional[int]
else:
self.string = content
self.unknown_values.add(self.normalize(content))
self.value_if_known = None
value_cache = {} #type: Dict[str, int]
"""Cache of known values of expressions."""
unknown_values = set() #type: Set[str]
"""Expressions whose values are not present in `value_cache` yet."""
def update_cache(self) -> None:
"""Update `value_cache` for expressions registered in `unknown_values`."""
expressions = sorted(self.unknown_values)
includes = ['include']
if build_tree.looks_like_tf_psa_crypto_root('.'):
includes.append('drivers/builtin/include')
values = c_build_helper.get_c_expression_values(
'unsigned long', '%lu',
expressions,
header="""
#include <psa/crypto.h>
""",
include_path=includes) #type: List[str]
for e, v in zip(expressions, values):
self.value_cache[e] = int(v, 0)
self.unknown_values.clear()
@staticmethod
def normalize(string: str) -> str:
"""Put the given C expression in a canonical form.
This function is only intended to give correct results for the
relatively simple kind of C expression typically used with this
module.
"""
return re.sub(r'\s+', r'', string)
def value(self) -> int:
"""Return the numerical value of the expression."""
if self.value_if_known is None:
if re.match(r'([0-9]+|0x[0-9a-f]+)\Z', self.string, re.I):
return int(self.string, 0)
normalized = self.normalize(self.string)
if normalized not in self.value_cache:
self.update_cache()
self.value_if_known = self.value_cache[normalized]
return self.value_if_known
Exprable = Union[str, int, Expr]
"""Something that can be converted to a C expression with a known numerical value."""
def as_expr(thing: Exprable) -> Expr:
"""Return an `Expr` object for `thing`.
If `thing` is already an `Expr` object, return it. Otherwise build a new
`Expr` object from `thing`. `thing` can be an integer or a string that
contains a C expression.
"""
if isinstance(thing, Expr):
return thing
else:
return Expr(thing)
class Key:
"""Representation of a PSA crypto key object and its storage encoding.
"""
LATEST_VERSION = 0
"""The latest version of the storage format."""
def __init__(self, *,
version: Optional[int] = None,
id: Optional[int] = None, #pylint: disable=redefined-builtin
lifetime: Exprable = 'PSA_KEY_LIFETIME_PERSISTENT',
type: Exprable, #pylint: disable=redefined-builtin
bits: int,
usage: Exprable, alg: Exprable, alg2: Exprable,
material: bytes #pylint: disable=used-before-assignment
) -> None:
self.version = self.LATEST_VERSION if version is None else version
self.id = id #pylint: disable=invalid-name #type: Optional[int]
self.lifetime = as_expr(lifetime) #type: Expr
self.type = as_expr(type) #type: Expr
self.bits = bits #type: int
self.usage = as_expr(usage) #type: Expr
self.alg = as_expr(alg) #type: Expr
self.alg2 = as_expr(alg2) #type: Expr
self.material = material #type: bytes
MAGIC = b'PSA\000KEY\000'
@staticmethod
def pack(
fmt: str,
*args: Union[int, Expr]
) -> bytes: #pylint: disable=used-before-assignment
"""Pack the given arguments into a byte string according to the given format.
This function is similar to `struct.pack`, but with the following differences:
* All integer values are encoded with standard sizes and in
little-endian representation. `fmt` must not include an endianness
prefix.
* Arguments can be `Expr` objects instead of integers.
* Only integer-valued elements are supported.
"""
return struct.pack('<' + fmt, # little-endian, standard sizes
*[arg.value() if isinstance(arg, Expr) else arg
for arg in args])
def bytes(self) -> bytes:
"""Return the representation of the key in storage as a byte array.
This is the content of the PSA storage file. When PSA storage is
implemented over stdio files, this does not include any wrapping made
by the PSA-storage-over-stdio-file implementation.
Note that if you need to make a change in this function,
this may indicate that the key store is changing in a
backward-incompatible way! Think carefully about backward
compatibility before making any change here.
"""
header = self.MAGIC + self.pack('L', self.version)
if self.version == 0:
attributes = self.pack('LHHLLL',
self.lifetime, self.type, self.bits,
self.usage, self.alg, self.alg2)
material = self.pack('L', len(self.material)) + self.material
else:
raise NotImplementedError
return header + attributes + material
def hex(self) -> str:
"""Return the representation of the key as a hexadecimal string.
This is the hexadecimal representation of `self.bytes`.
"""
return self.bytes().hex()
def location_value(self) -> int:
"""The numerical value of the location encoded in the key's lifetime."""
return self.lifetime.value() >> 8
class TestKey(unittest.TestCase):
# pylint: disable=line-too-long
"""A few smoke tests for the functionality of the `Key` class."""
def test_numerical(self):
key = Key(version=0,
id=1, lifetime=0x00000001,
type=0x2400, bits=128,
usage=0x00000300, alg=0x05500200, alg2=0x04c01000,
material=b'@ABCDEFGHIJKLMNO')
expected_hex = '505341004b45590000000000010000000024800000030000000250050010c00410000000404142434445464748494a4b4c4d4e4f'
self.assertEqual(key.bytes(), bytes.fromhex(expected_hex))
self.assertEqual(key.hex(), expected_hex)
def test_names(self):
length = 0xfff8 // 8 # PSA_MAX_KEY_BITS in bytes
key = Key(version=0,
id=1, lifetime='PSA_KEY_LIFETIME_PERSISTENT',
type='PSA_KEY_TYPE_RAW_DATA', bits=length*8,
usage=0, alg=0, alg2=0,
material=b'\x00' * length)
expected_hex = '505341004b45590000000000010000000110f8ff000000000000000000000000ff1f0000' + '00' * length
self.assertEqual(key.bytes(), bytes.fromhex(expected_hex))
self.assertEqual(key.hex(), expected_hex)
def test_defaults(self):
key = Key(type=0x1001, bits=8,
usage=0, alg=0, alg2=0,
material=b'\x2a')
expected_hex = '505341004b455900000000000100000001100800000000000000000000000000010000002a'
self.assertEqual(key.bytes(), bytes.fromhex(expected_hex))
self.assertEqual(key.hex(), expected_hex)

View File

@ -1,91 +0,0 @@
"""Library for constructing an Mbed TLS test case.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import binascii
import os
import sys
from typing import Iterable, List, Optional
from . import typing_util
def hex_string(data: bytes) -> str:
return '"' + binascii.hexlify(data).decode('ascii') + '"'
class MissingDescription(Exception):
pass
class MissingFunction(Exception):
pass
class TestCase:
"""An Mbed TLS test case."""
def __init__(self, description: Optional[str] = None):
self.comments = [] #type: List[str]
self.description = description #type: Optional[str]
self.dependencies = [] #type: List[str]
self.function = None #type: Optional[str]
self.arguments = [] #type: List[str]
def add_comment(self, *lines: str) -> None:
self.comments += lines
def set_description(self, description: str) -> None:
self.description = description
def set_dependencies(self, dependencies: List[str]) -> None:
self.dependencies = dependencies
def set_function(self, function: str) -> None:
self.function = function
def set_arguments(self, arguments: List[str]) -> None:
self.arguments = arguments
def check_completeness(self) -> None:
if self.description is None:
raise MissingDescription
if self.function is None:
raise MissingFunction
def write(self, out: typing_util.Writable) -> None:
"""Write the .data file paragraph for this test case.
The output starts and ends with a single newline character. If the
surrounding code writes lines (consisting of non-newline characters
and a final newline), you will end up with a blank line before, but
not after the test case.
"""
self.check_completeness()
assert self.description is not None # guide mypy
assert self.function is not None # guide mypy
out.write('\n')
for line in self.comments:
out.write('# ' + line + '\n')
out.write(self.description + '\n')
if self.dependencies:
out.write('depends_on:' + ':'.join(self.dependencies) + '\n')
out.write(self.function + ':' + ':'.join(self.arguments) + '\n')
def write_data_file(filename: str,
test_cases: Iterable[TestCase],
caller: Optional[str] = None) -> None:
"""Write the test cases to the specified file.
If the file already exists, it is overwritten.
"""
if caller is None:
caller = os.path.basename(sys.argv[0])
tempfile = filename + '.new'
with open(tempfile, 'w') as out:
out.write('# Automatically generated by {}. Do not edit!\n'
.format(caller))
for tc in test_cases:
tc.write(out)
out.write('\n# End of automatically generated file.\n')
os.replace(tempfile, filename)

View File

@ -1,224 +0,0 @@
"""Common code for test data generation.
This module defines classes that are of general use to automatically
generate .data files for unit tests, as well as a main function.
These are used both by generate_psa_tests.py and generate_bignum_tests.py.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
import argparse
import os
import posixpath
import re
import inspect
from abc import ABCMeta, abstractmethod
from typing import Callable, Dict, Iterable, Iterator, List, Type, TypeVar
from . import build_tree
from . import test_case
T = TypeVar('T') #pylint: disable=invalid-name
class BaseTest(metaclass=ABCMeta):
"""Base class for test case generation.
Attributes:
count: Counter for test cases from this class.
case_description: Short description of the test case. This may be
automatically generated using the class, or manually set.
dependencies: A list of dependencies required for the test case.
show_test_count: Toggle for inclusion of `count` in the test description.
test_function: Test function which the class generates cases for.
test_name: A common name or description of the test function. This can
be `test_function`, a clearer equivalent, or a short summary of the
test function's purpose.
"""
count = 0
case_description = ""
dependencies = [] # type: List[str]
show_test_count = True
test_function = ""
test_name = ""
def __new__(cls, *args, **kwargs):
# pylint: disable=unused-argument
cls.count += 1
return super().__new__(cls)
@abstractmethod
def arguments(self) -> List[str]:
"""Get the list of arguments for the test case.
Override this method to provide the list of arguments required for
the `test_function`.
Returns:
List of arguments required for the test function.
"""
raise NotImplementedError
def description(self) -> str:
"""Create a test case description.
Creates a description of the test case, including a name for the test
function, an optional case count, and a description of the specific
test case. This should inform a reader what is being tested, and
provide context for the test case.
Returns:
Description for the test case.
"""
if self.show_test_count:
return "{} #{} {}".format(
self.test_name, self.count, self.case_description
).strip()
else:
return "{} {}".format(self.test_name, self.case_description).strip()
def create_test_case(self) -> test_case.TestCase:
"""Generate TestCase from the instance."""
tc = test_case.TestCase()
tc.set_description(self.description())
tc.set_function(self.test_function)
tc.set_arguments(self.arguments())
tc.set_dependencies(self.dependencies)
return tc
@classmethod
@abstractmethod
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
"""Generate test cases for the class test function.
This will be called in classes where `test_function` is set.
Implementations should yield TestCase objects, by creating instances
of the class with appropriate input data, and then calling
`create_test_case()` on each.
"""
raise NotImplementedError
class BaseTarget:
#pylint: disable=too-few-public-methods
"""Base target for test case generation.
Child classes of this class represent an output file, and can be referred
to as file targets. These indicate where test cases will be written to for
all subclasses of the file target, which is set by `target_basename`.
Attributes:
target_basename: Basename of file to write generated tests to. This
should be specified in a child class of BaseTarget.
"""
target_basename = ""
@classmethod
def generate_tests(cls) -> Iterator[test_case.TestCase]:
"""Generate test cases for the class and its subclasses.
In classes with `test_function` set, `generate_function_tests()` is
called to generate test cases first.
In all classes, this method will iterate over its subclasses, and
yield from `generate_tests()` in each. Calling this method on a class X
will yield test cases from all classes derived from X.
"""
if issubclass(cls, BaseTest) and not inspect.isabstract(cls):
#pylint: disable=no-member
yield from cls.generate_function_tests()
for subclass in sorted(cls.__subclasses__(), key=lambda c: c.__name__):
yield from subclass.generate_tests()
class TestGenerator:
"""Generate test cases and write to data files."""
def __init__(self, options) -> None:
self.test_suite_directory = options.directory
# Update `targets` with an entry for each child class of BaseTarget.
# Each entry represents a file generated by the BaseTarget framework,
# and enables generating the .data files using the CLI.
self.targets.update({
subclass.target_basename: subclass.generate_tests
for subclass in BaseTarget.__subclasses__()
if subclass.target_basename
})
def filename_for(self, basename: str) -> str:
"""The location of the data file with the specified base name."""
return posixpath.join(self.test_suite_directory, basename + '.data')
def write_test_data_file(self, basename: str,
test_cases: Iterable[test_case.TestCase]) -> None:
"""Write the test cases to a .data file.
The output file is ``basename + '.data'`` in the test suite directory.
"""
filename = self.filename_for(basename)
test_case.write_data_file(filename, test_cases)
# Note that targets whose names contain 'test_format' have their content
# validated by `abi_check.py`.
targets = {} # type: Dict[str, Callable[..., Iterable[test_case.TestCase]]]
def generate_target(self, name: str, *target_args) -> None:
"""Generate cases and write to data file for a target.
For target callables which require arguments, override this function
and pass these arguments using super() (see PSATestGenerator).
"""
test_cases = self.targets[name](*target_args)
self.write_test_data_file(name, test_cases)
def main(args, description: str, generator_class: Type[TestGenerator] = TestGenerator):
"""Command line entry point."""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--list', action='store_true',
help='List available targets and exit')
parser.add_argument('--list-for-cmake', action='store_true',
help='Print \';\'-separated list of available targets and exit')
# If specified explicitly, this option may be a path relative to the
# current directory when the script is invoked. The default value
# is relative to the mbedtls root, which we don't know yet. So we
# can't set a string as the default value here.
parser.add_argument('--directory', metavar='DIR',
help='Output directory (default: tests/suites)')
parser.add_argument('targets', nargs='*', metavar='TARGET',
help='Target file to generate (default: all; "-": none)')
options = parser.parse_args(args)
# Change to the mbedtls root, to keep things simple. But first, adjust
# command line options that might be relative paths.
if options.directory is None:
options.directory = 'tests/suites'
else:
options.directory = os.path.abspath(options.directory)
build_tree.chdir_to_root()
generator = generator_class(options)
if options.list:
for name in sorted(generator.targets):
print(generator.filename_for(name))
return
# List in a cmake list format (i.e. ';'-separated)
if options.list_for_cmake:
print(';'.join(generator.filename_for(name)
for name in sorted(generator.targets)), end='')
return
if options.targets:
# Allow "-" as a special case so you can run
# ``generate_xxx_tests.py - $targets`` and it works uniformly whether
# ``$targets`` is empty or not.
options.targets = [os.path.basename(re.sub(r'\.data\Z', r'', target))
for target in options.targets
if target != '-']
else:
options.targets = sorted(generator.targets)
for target in options.targets:
generator.generate_target(target)

View File

@ -1,28 +0,0 @@
"""Auxiliary definitions used in type annotations.
"""
# Copyright The Mbed TLS Contributors
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
#
from typing import Any
# The typing_extensions module is necessary for type annotations that are
# checked with mypy. It is only used for type annotations or to define
# things that are themselves only used for type annotations. It is not
# available on a default Python installation. Therefore, try loading
# what we need from it for the sake of mypy (which depends on, or comes
# with, typing_extensions), and if not define substitutes that lack the
# static type information but are good enough at runtime.
try:
from typing_extensions import Protocol #pylint: disable=import-error
except ImportError:
class Protocol: #type: ignore
#pylint: disable=too-few-public-methods
pass
class Writable(Protocol):
"""Abstract class for typing hints."""
# pylint: disable=no-self-use,too-few-public-methods,unused-argument
def write(self, text: str) -> Any:
...