Tidy up, removing MPI_CORE(), and using the new mbedtls_mpi_core_mla()

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
This commit is contained in:
Tom Cosgrove 2022-08-23 16:15:19 +01:00
parent 71f4b0dda6
commit 90c426b932
3 changed files with 61 additions and 116 deletions

View File

@ -1156,38 +1156,6 @@ int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint
return( mbedtls_mpi_sub_mpi( X, A, &B ) );
}
mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0; /* carry */
size_t excess_len = d_len - s_len;
size_t steps_x8 = s_len / 8;
size_t steps_x1 = s_len & 7;
while( steps_x8-- )
{
MULADDC_X8_INIT
MULADDC_X8_CORE
MULADDC_X8_STOP
}
while( steps_x1-- )
{
MULADDC_X1_INIT
MULADDC_X1_CORE
MULADDC_X1_STOP
}
while( excess_len-- )
{
*d += c; c = ( *d < c ); d++;
}
return( c );
}
/*
* Baseline multiplication: X = A * B (HAC 14.12)
*/

View File

@ -155,9 +155,35 @@ int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *A,
#define GET_BYTE( X, i ) \
( ( (X)[(i) / ciL] >> ( ( (i) % ciL ) * 8 ) ) & 0xff )
/** Perform a known-size multiply accumulate operation
/**
* \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
*
* Add \p b * \p s to \p d.
* \param[out] X The destination MPI, as a little-endian array of
* length \p n.
* On successful completion, X contains the result of
* the multiplication A * B * R^-1 mod N where
* R = (2^ciL)^n.
* \param[in] A Little-endian presentation of first operand.
* Must have exactly \p n limbs.
* \param[in] B Little-endian presentation of second operand.
* \param[in] B_len The number of limbs in \p B.
* \param[in] N Little-endian presentation of the modulus.
* This must be odd and have exactly \p n limbs.
* \param[in] n The number of limbs in \p X, \p A, \p N.
* \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL.
* This can be calculated by `mpi_montg_init()`.
* \param[in,out] T Temporary storage of size at least 2*n+1 limbs.
* Its initial content is unused and
* its final content is indeterminate.
*/
void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B, size_t B_len,
const mbedtls_mpi_uint *N, size_t n,
mbedtls_mpi_uint mm, mbedtls_mpi_uint *T );
/**
* \brief Perform a known-size multiply accumulate operation: d += b * s
*
* \param[in,out] d The pointer to the (little-endian) array
* representing the bignum to accumulate onto.
@ -176,55 +202,6 @@ mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b );
#define MPI_CORE(func) mbedtls_mpi_core_ ## func ## _minimal
/** Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
*
* \param[out] X The destination MPI, as a big endian array of length \p n.
* On successful completion, X contains the result of
* the multiplication A * B * R^-1 mod N where
* R = (2^ciL)^n.
* \param[in] A Big endian presentation of first operand.
* Must have exactly \p n limbs.
* \param[in] B Big endian presentation of second operand.
* \param[in] B_len The number of limbs in \p B.
* \param[in] N Big endian presentation of the modulus.
* This must be odd and have exactly \p n limbs.
* \param[in] n The number of limbs in \p X, \p A, \p N.
* \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL.
* This can be calculated by `mpi_montg_init()`.
* \param[in,out] T Temporary storage of size at least 2*n+1 limbs.
* Its initial content is unused and
* its final content is indeterminate.
*/
void MPI_CORE(montmul)( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B, size_t B_len,
const mbedtls_mpi_uint *N, size_t n,
mbedtls_mpi_uint mm, mbedtls_mpi_uint *T );
/**
* \brief Perform a known-size multiply accumulate operation
*
* Add \p b * \p s to \p d.
*
* \param[in,out] d The pointer to the (little-endian) array
* representing the bignum to accumulate onto.
* \param d_len The number of limbs of \p d. This must be
* at least \p s_len.
* \param[in] s The pointer to the (little-endian) array
* representing the bignum to multiply with.
* This may be the same as \p d. Otherwise,
* it must be disjoint from \p d.
* \param s_len The number of limbs of \p s.
* \param b A scalar to multiply with.
*
* \return c The carry at the end of the operation.
*/
mbedtls_mpi_uint MPI_CORE(mla)( mbedtls_mpi_uint *d, size_t d_len ,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b );
/**
* \brief Subtract two known-size large unsigned integers, returning the borrow.
*
@ -235,17 +212,17 @@ mbedtls_mpi_uint MPI_CORE(mla)( mbedtls_mpi_uint *d, size_t d_len ,
* d may be aliased to l or r.
*
* \param[out] d The result of the subtraction.
* \param[in] l The left operand.
* \param[in] r The right operand.
* \param[in] l Little-endian presentation of left operand.
* \param[in] r Little-endian presentation of right operand.
* \param n Number of limbs of \p d, \p l and \p r.
*
* \return 1 if `l < r`.
* 0 if `l >= r`.
*/
mbedtls_mpi_uint MPI_CORE(sub)( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *l,
const mbedtls_mpi_uint *r,
size_t n );
mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *l,
const mbedtls_mpi_uint *r,
size_t n );
/**
* \brief Constant-time conditional addition of two known-size large unsigned
@ -270,9 +247,9 @@ mbedtls_mpi_uint MPI_CORE(sub)( mbedtls_mpi_uint *d,
*
* \return 1 if `d + cond*r >= (2^{ciL})^n`, 0 otherwise.
*/
mbedtls_mpi_uint MPI_CORE(add_if)( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *r,
size_t n,
unsigned cond );
mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *r,
size_t n,
unsigned cond );
#endif /* MBEDTLS_BIGNUM_CORE_H */

View File

@ -27,14 +27,14 @@
#include <string.h>
void MPI_CORE(montmul)( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_len,
const mbedtls_mpi_uint *N,
size_t n,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T )
void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_len,
const mbedtls_mpi_uint *N,
size_t n,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T )
{
memset( T, 0, (2*n+1)*ciL );
@ -45,21 +45,21 @@ void MPI_CORE(montmul)( mbedtls_mpi_uint *X,
u0 = A[i];
u1 = ( T[0] + u0 * B[0] ) * mm;
(void) MPI_CORE(mla)( T, n + 2, B, B_len, u0 );
(void) MPI_CORE(mla)( T, n + 2, N, n, u1 );
(void) mbedtls_mpi_core_mla( T, n + 2, B, B_len, u0 );
(void) mbedtls_mpi_core_mla( T, n + 2, N, n, u1 );
}
mbedtls_mpi_uint carry, borrow, fixup;
carry = T[n];
borrow = MPI_CORE(sub)( X, T, N, n );
borrow = mbedtls_mpi_core_sub( X, T, N, n );
fixup = carry < borrow;
(void) MPI_CORE(add_if)( X, N, n, fixup );
(void) mbedtls_mpi_core_add_if( X, N, n, fixup );
}
mbedtls_mpi_uint MPI_CORE(mla)( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b )
mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0; /* carry */
if( d_len < s_len )
@ -90,10 +90,10 @@ mbedtls_mpi_uint MPI_CORE(mla)( mbedtls_mpi_uint *d, size_t d_len,
return( c );
}
mbedtls_mpi_uint MPI_CORE(sub)( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *l,
const mbedtls_mpi_uint *r,
size_t n )
mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *l,
const mbedtls_mpi_uint *r,
size_t n )
{
mbedtls_mpi_uint c = 0, t, z;
@ -106,10 +106,10 @@ mbedtls_mpi_uint MPI_CORE(sub)( mbedtls_mpi_uint *d,
return( c );
}
mbedtls_mpi_uint MPI_CORE(add_if)( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *r,
size_t n,
unsigned cond )
mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *d,
const mbedtls_mpi_uint *r,
size_t n,
unsigned cond )
{
mbedtls_mpi_uint c = 0, t;
for( size_t i = 0; i < n; i++ )