mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-02-12 03:40:04 +00:00
Move mbedtls_mpi_core_random to the proper source file
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
parent
78cf3bbf22
commit
70375b2028
@ -1981,67 +1981,6 @@ int mbedtls_mpi_random( mbedtls_mpi *X,
|
||||
return( mbedtls_mpi_core_random( X->p, min, N->p, X->n, f_rng, p_rng ) );
|
||||
}
|
||||
|
||||
int mbedtls_mpi_core_random( mbedtls_mpi_uint *X,
|
||||
mbedtls_mpi_uint min,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t limbs,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
unsigned ge_lower = 1, lt_upper = 0;
|
||||
size_t n_bits = mbedtls_mpi_core_bitlen( N, limbs );
|
||||
size_t n_bytes = ( n_bits + 7 ) / 8;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
/*
|
||||
* When min == 0, each try has at worst a probability 1/2 of failing
|
||||
* (the msb has a probability 1/2 of being 0, and then the result will
|
||||
* be < N), so after 30 tries failure probability is a most 2**(-30).
|
||||
*
|
||||
* When N is just below a power of 2, as is the case when generating
|
||||
* a random scalar on most elliptic curves, 1 try is enough with
|
||||
* overwhelming probability. When N is just above a power of 2,
|
||||
* as when generating a random scalar on secp224k1, each try has
|
||||
* a probability of failing that is almost 1/2.
|
||||
*
|
||||
* The probabilities are almost the same if min is nonzero but negligible
|
||||
* compared to N. This is always the case when N is crypto-sized, but
|
||||
* it's convenient to support small N for testing purposes. When N
|
||||
* is small, use a higher repeat count, otherwise the probability of
|
||||
* failure is macroscopic.
|
||||
*/
|
||||
int count = ( n_bytes > 4 ? 30 : 250 );
|
||||
|
||||
/*
|
||||
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
|
||||
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
|
||||
* - use the same byte ordering;
|
||||
* - keep the leftmost n_bits bits of the generated octet string;
|
||||
* - try until result is in the desired range.
|
||||
* This also avoids any bias, which is especially important for ECDSA.
|
||||
*/
|
||||
do
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X, limbs,
|
||||
n_bytes,
|
||||
f_rng, p_rng ) );
|
||||
mbedtls_mpi_core_shift_r( X, limbs, 8 * n_bytes - n_bits );
|
||||
|
||||
if( --count == 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
ge_lower = mbedtls_mpi_core_uint_le_mpi( min, X, limbs );
|
||||
lt_upper = mbedtls_mpi_core_lt_ct( X, N, limbs );
|
||||
}
|
||||
while( ge_lower == 0 || lt_upper == 0 );
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
|
||||
*/
|
||||
|
@ -602,6 +602,67 @@ cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
int mbedtls_mpi_core_random( mbedtls_mpi_uint *X,
|
||||
mbedtls_mpi_uint min,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t limbs,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
unsigned ge_lower = 1, lt_upper = 0;
|
||||
size_t n_bits = mbedtls_mpi_core_bitlen( N, limbs );
|
||||
size_t n_bytes = ( n_bits + 7 ) / 8;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
/*
|
||||
* When min == 0, each try has at worst a probability 1/2 of failing
|
||||
* (the msb has a probability 1/2 of being 0, and then the result will
|
||||
* be < N), so after 30 tries failure probability is a most 2**(-30).
|
||||
*
|
||||
* When N is just below a power of 2, as is the case when generating
|
||||
* a random scalar on most elliptic curves, 1 try is enough with
|
||||
* overwhelming probability. When N is just above a power of 2,
|
||||
* as when generating a random scalar on secp224k1, each try has
|
||||
* a probability of failing that is almost 1/2.
|
||||
*
|
||||
* The probabilities are almost the same if min is nonzero but negligible
|
||||
* compared to N. This is always the case when N is crypto-sized, but
|
||||
* it's convenient to support small N for testing purposes. When N
|
||||
* is small, use a higher repeat count, otherwise the probability of
|
||||
* failure is macroscopic.
|
||||
*/
|
||||
int count = ( n_bytes > 4 ? 30 : 250 );
|
||||
|
||||
/*
|
||||
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
|
||||
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
|
||||
* - use the same byte ordering;
|
||||
* - keep the leftmost n_bits bits of the generated octet string;
|
||||
* - try until result is in the desired range.
|
||||
* This also avoids any bias, which is especially important for ECDSA.
|
||||
*/
|
||||
do
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X, limbs,
|
||||
n_bytes,
|
||||
f_rng, p_rng ) );
|
||||
mbedtls_mpi_core_shift_r( X, limbs, 8 * n_bytes - n_bits );
|
||||
|
||||
if( --count == 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
ge_lower = mbedtls_mpi_core_uint_le_mpi( min, X, limbs );
|
||||
lt_upper = mbedtls_mpi_core_lt_ct( X, N, limbs );
|
||||
}
|
||||
while( ge_lower == 0 || lt_upper == 0 );
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/* BEGIN MERGE SLOT 1 */
|
||||
|
||||
static size_t exp_mod_get_window_size( size_t Ebits )
|
||||
|
Loading…
x
Reference in New Issue
Block a user