move mbedtls_ecp_sw_derive_y after MPI_ECP_ macros

Signed-off-by: Glenn Strauss <gstrauss@gluelogic.com>
This commit is contained in:
Glenn Strauss 2022-12-19 19:37:07 -05:00
parent fcabc28cfc
commit 452416121d

View File

@ -771,58 +771,7 @@ cleanup:
static int mbedtls_ecp_sw_derive_y( const mbedtls_ecp_group *grp,
const mbedtls_mpi *X,
mbedtls_mpi *Y,
int parity_bit )
{
/* w = y^2 = x^3 + ax + b
* y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
*
* Note: this method for extracting square root does not validate that w
* was indeed a square so this function will return garbage in Y if X
* does not correspond to a point on the curve.
*/
/* Check prerequisite p = 3 mod 4 */
if( mbedtls_mpi_get_bit( &grp->P, 0 ) != 1 ||
mbedtls_mpi_get_bit( &grp->P, 1 ) != 1 )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
int ret;
mbedtls_mpi exp;
mbedtls_mpi_init( &exp );
/* use Y to store intermediate results */
/* y^2 = x^3 + ax + b = (x^2 + a)x + b */
/* x^2 */
MPI_ECP_MUL( Y, X, X );
/* x^2 + a */
if( !grp->A.p ) /* special case for A = -3; temporarily set exp = -3 */
MPI_ECP_LSET( &exp, -3 );
MPI_ECP_ADD( Y, Y, grp->A.p ? &grp->A : &exp );
/* (x^2 + a)x */
MPI_ECP_MUL( Y, Y, X );
/* (x^2 + a)x + b */
MPI_ECP_ADD( Y, Y, &grp->B );
/* w = y^2 */ /* Y contains y^2 intermediate result */
/* exp = ((p+1)/4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &exp, &grp->P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &exp, 2 ) );
/* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( Y, Y /*y^2*/, &exp, &grp->P, NULL ) );
/* check parity bit match or else invert Y */
/* This quick inversion implementation is valid because Y != 0 for all
* Short Weierstrass curves supported by mbedtls, as each supported curve
* has an order that is a large prime, so each supported curve does not
* have any point of order 2, and a point with Y == 0 would be of order 2 */
if( mbedtls_mpi_get_bit( Y, 0 ) != parity_bit )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( Y, &grp->P, Y ) );
cleanup:
mbedtls_mpi_free( &exp );
return( ret );
}
int parity_bit );
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
/*
@ -1274,6 +1223,64 @@ cleanup:
#define MPI_ECP_COND_SWAP( X, Y, cond ) \
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( (X), (Y), (cond) ) )
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
static int mbedtls_ecp_sw_derive_y( const mbedtls_ecp_group *grp,
const mbedtls_mpi *X,
mbedtls_mpi *Y,
int parity_bit )
{
/* w = y^2 = x^3 + ax + b
* y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
*
* Note: this method for extracting square root does not validate that w
* was indeed a square so this function will return garbage in Y if X
* does not correspond to a point on the curve.
*/
/* Check prerequisite p = 3 mod 4 */
if( mbedtls_mpi_get_bit( &grp->P, 0 ) != 1 ||
mbedtls_mpi_get_bit( &grp->P, 1 ) != 1 )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
int ret;
mbedtls_mpi exp;
mbedtls_mpi_init( &exp );
/* use Y to store intermediate results */
/* y^2 = x^3 + ax + b = (x^2 + a)x + b */
/* x^2 */
MPI_ECP_MUL( Y, X, X );
/* x^2 + a */
if( !grp->A.p ) /* special case for A = -3; temporarily set exp = -3 */
MPI_ECP_LSET( &exp, -3 );
MPI_ECP_ADD( Y, Y, grp->A.p ? &grp->A : &exp );
/* (x^2 + a)x */
MPI_ECP_MUL( Y, Y, X );
/* (x^2 + a)x + b */
MPI_ECP_ADD( Y, Y, &grp->B );
/* w = y^2 */ /* Y contains y^2 intermediate result */
/* exp = ((p+1)/4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &exp, &grp->P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &exp, 2 ) );
/* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( Y, Y /*y^2*/, &exp, &grp->P, NULL ) );
/* check parity bit match or else invert Y */
/* This quick inversion implementation is valid because Y != 0 for all
* Short Weierstrass curves supported by mbedtls, as each supported curve
* has an order that is a large prime, so each supported curve does not
* have any point of order 2, and a point with Y == 0 would be of order 2 */
if( mbedtls_mpi_get_bit( Y, 0 ) != parity_bit )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( Y, &grp->P, Y ) );
cleanup:
mbedtls_mpi_free( &exp );
return( ret );
}
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
/*
* For curves in short Weierstrass form, we do all the internal operations in