Merge pull request #7222 from minosgalanakis/bignum/6851_extract_Secp384r1_fast_reduction

Bignum:  Extract secp384r1 fast reduction from the prototype
This commit is contained in:
Janos Follath 2023-03-27 16:56:30 +01:00 committed by GitHub
commit 445c3bfcac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 259 additions and 150 deletions

View File

@ -4585,6 +4585,8 @@ int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs);
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
static int ecp_mod_p384(mbedtls_mpi *);
MBEDTLS_STATIC_TESTABLE
int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
#endif
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
static int ecp_mod_p521(mbedtls_mpi *);
@ -5181,6 +5183,102 @@ int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs)
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/*
* Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
*/
static int ecp_mod_p384(mbedtls_mpi *N)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t expected_width = 2 * ((384 + biL - 1) / biL);
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
ret = mbedtls_ecp_mod_p384_raw(N->p, expected_width);
cleanup:
return ret;
}
MBEDTLS_STATIC_TESTABLE
int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs)
{
if (X_limbs != 2*((384 + biL - 1)/biL)) {
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
}
INIT(384);
ADD(12); ADD(21); ADD(20);
SUB(23); NEXT; // A0
ADD(13); ADD(22); ADD(23);
SUB(12); SUB(20); NEXT; // A1
ADD(14); ADD(23);
SUB(13); SUB(21); NEXT; // A2
ADD(15); ADD(12); ADD(20); ADD(21);
SUB(14); SUB(22); SUB(23); NEXT; // A3
ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
SUB(15); SUB(23); SUB(23); NEXT; // A4
ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
SUB(16); NEXT; // A5
ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
SUB(17); NEXT; // A6
ADD(19); ADD(16); ADD(15); ADD(23);
SUB(18); NEXT; // A7
ADD(20); ADD(17); ADD(16);
SUB(19); NEXT; // A8
ADD(21); ADD(18); ADD(17);
SUB(20); NEXT; // A9
ADD(22); ADD(19); ADD(18);
SUB(21); NEXT; // A10
ADD(23); ADD(20); ADD(19);
SUB(22); // A11
RESET;
/* Use 2^384 = P + 2^128 + 2^96 - 2^32 + 1 to modulo reduce the final carry */
ADD_LAST; NEXT; // A0
SUB_LAST; NEXT; // A1
; NEXT; // A2
ADD_LAST; NEXT; // A3
ADD_LAST; NEXT; // A4
; NEXT; // A5
; NEXT; // A6
; NEXT; // A7
; NEXT; // A8
; NEXT; // A9
; NEXT; // A10
// A11
RESET;
ADD_LAST; NEXT; // A0
SUB_LAST; NEXT; // A1
; NEXT; // A2
ADD_LAST; NEXT; // A3
ADD_LAST; NEXT; // A4
; NEXT; // A5
; NEXT; // A6
; NEXT; // A7
; NEXT; // A8
; NEXT; // A9
; NEXT; // A10
// A11
LAST;
return 0;
}
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
#undef LOAD32
#undef MAX32
#undef A
@ -5201,96 +5299,7 @@ int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs)
MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
MBEDTLS_ECP_DP_SECP384R1_ENABLED */
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/*
* The reader is advised to first understand ecp_mod_p192() since the same
* general structure is used here, but with additional complications:
* (1) chunks of 32 bits, and (2) subtractions.
*/
/*
* For these primes, we need to handle data in chunks of 32 bits.
* This makes it more complicated if we use 64 bits limbs in MPI,
* which prevents us from using a uniform access method as for p192.
*
* So, we define a mini abstraction layer to access 32 bit chunks,
* load them in 'cur' for work, and store them back from 'cur' when done.
*
* While at it, also define the size of N in terms of 32-bit chunks.
*/
#define LOAD32 cur = A(i);
#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
#define MAX32 N->n
#define A(j) N->p[j]
#define STORE32 N->p[i] = cur;
#else /* 64-bit */
#define MAX32 N->n * 2
#define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
(uint32_t) (N->p[(j)/2])
#define STORE32 \
if (i % 2) { \
N->p[i/2] &= 0x00000000FFFFFFFF; \
N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
} else { \
N->p[i/2] &= 0xFFFFFFFF00000000; \
N->p[i/2] |= (mbedtls_mpi_uint) cur; \
}
#endif /* sizeof( mbedtls_mpi_uint ) */
/*
* Helpers for addition and subtraction of chunks, with signed carry.
*/
static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
{
*dst += src;
*carry += (*dst < src);
}
static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
{
*carry -= (*dst < src);
*dst -= src;
}
#define ADD(j) add32(&cur, A(j), &c);
#define SUB(j) sub32(&cur, A(j), &c);
/*
* Helpers for the main 'loop'
*/
#define INIT(b) \
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
signed char c = 0, cc; \
uint32_t cur; \
size_t i = 0, bits = (b); \
/* N is the size of the product of two b-bit numbers, plus one */ \
/* limb for fix_negative */ \
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1)); \
LOAD32;
#define NEXT \
STORE32; i++; LOAD32; \
cc = c; c = 0; \
if (cc < 0) \
sub32(&cur, -cc, &c); \
else \
add32(&cur, cc, &c); \
#define LAST \
STORE32; i++; \
cur = c > 0 ? c : 0; STORE32; \
cur = 0; while (++i < MAX32) { STORE32; } \
if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);
/*
* If the result is negative, we get it in the form
* c * 2^bits + N, with c negative and N positive shorter than 'bits'
*/
#if defined(MBEDTLS_TEST_HOOKS) && defined(MBEDTLS_ECP_C)
MBEDTLS_STATIC_TESTABLE
void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
{
@ -5321,66 +5330,7 @@ void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
#endif
N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
}
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/*
* Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
*/
static int ecp_mod_p384(mbedtls_mpi *N)
{
INIT(384);
ADD(12); ADD(21); ADD(20);
SUB(23); NEXT; // A0
ADD(13); ADD(22); ADD(23);
SUB(12); SUB(20); NEXT; // A2
ADD(14); ADD(23);
SUB(13); SUB(21); NEXT; // A2
ADD(15); ADD(12); ADD(20); ADD(21);
SUB(14); SUB(22); SUB(23); NEXT; // A3
ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
SUB(15); SUB(23); SUB(23); NEXT; // A4
ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
SUB(16); NEXT; // A5
ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
SUB(17); NEXT; // A6
ADD(19); ADD(16); ADD(15); ADD(23);
SUB(18); NEXT; // A7
ADD(20); ADD(17); ADD(16);
SUB(19); NEXT; // A8
ADD(21); ADD(18); ADD(17);
SUB(20); NEXT; // A9
ADD(22); ADD(19); ADD(18);
SUB(21); NEXT; // A10
ADD(23); ADD(20); ADD(19);
SUB(22); LAST; // A11
cleanup:
return ret;
}
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
#undef A
#undef LOAD32
#undef STORE32
#undef MAX32
#undef INIT
#undef NEXT
#undef LAST
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
MBEDTLS_ECP_DP_SECP384R1_ENABLED */
#endif /* MBEDTLS_TEST_HOOKS & MBEDTLS_ECP_C */
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
/* Size of p521 in terms of mbedtls_mpi_uint */

View File

@ -160,6 +160,28 @@ int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *X, size_t X_limbs);
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/** Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
*
* \param[in,out] X The address of the MPI to be converted.
* Must have exact limb size that stores a 768-bit MPI
* (double the bitlength of the modulus).
* Upon return holds the reduced value which is
* in range `0 <= X < 2 * N` (where N is the modulus).
* The bitlength of the reduced value is the same as
* that of the modulus (384 bits).
* \param[in] X_limbs The length of \p N in limbs.
*
* \return \c 0 on success.
* \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p N_n does not have
* twice as many limbs as the modulus.
*/
MBEDTLS_STATIC_TESTABLE
int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
/** Initialise a modulus with hard-coded const curve data.
*
* \note The caller is responsible for the \p N modulus' memory.

View File

@ -145,6 +145,100 @@ class EcpP224R1Raw(bignum_common.ModOperationCommon,
return True
class EcpP384R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ecp quasi_reduction modulo p384."""
test_function = "ecp_mod_p384_raw"
test_name = "ecp_mod_p384_raw"
input_style = "fixed"
arity = 1
moduli = [("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffeffffffff0000000000000000ffffffff")
] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef"
"fffffff0000000000000000fffffffe"),
# Maximum canonical P384 multiplication result
("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fdfffffffe0000000000000001fffffffc0000000000000000000000000000000"
"10000000200000000fffffffe000000020000000400000000fffffffc00000004"),
# Testing with overflow in A(12) + A(21) + A(20);
("497811378624857a2c2af60d70583376545484cfae5c812fe2999fc1abb51d18b"
"559e8ca3b50aaf263fdf8f24bdfb98fffffffff20e65bf9099e4e73a5e8b517cf"
"4fbeb8fd1750fdae6d43f2e53f82d5ffffffffffffffffcc6f1e06111c62e0"),
# Testing with underflow in A(13) + A(22) + A(23) - A(12) - A(20);
("dfdd25e96777406b3c04b8c7b406f5fcf287e1e576003a092852a6fbe517f2712"
"b68abef41dbd35183a0614fb7222606ffffffff84396eee542f18a9189d94396c"
"784059c17a9f18f807214ef32f2f10ffffffff8a77fac20000000000000000"),
# Testing with overflow in A(23) + A(20) + A(19) - A(22);
("783753f8a5afba6c1862eead1deb2fcdd907272be3ffd18542b24a71ee8b26ca"
"b0aa33513610ff973042bbe1637cc9fc99ad36c7f703514572cf4f5c3044469a"
"8f5be6312c19e5d3f8fc1ac6ffffffffffffffff8c86252400000000ffffffff"),
# Testing with underflow in A(23) + A(20) + A(19) - A(22);
("65e1d2362fce922663b7fd517586e88842a9b4bd092e93e6251c9c69f278cbf8"
"285d99ae3b53da5ba36e56701e2b17c225f1239556c5f00117fa140218b46ebd8"
"e34f50d0018701fa8a0a5cc00000000000000004410bcb4ffffffff00000000"),
# Testing the second round of carry reduction
("000000000000000000000000ffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffff00000000000000000000000000000000ffffffff00000000"
"000000000000000100000000000000000000000000000000ffffffff00000001"),
# First 8 number generated by random.getrandbits(768) - seed(2,2)
("ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd9b1f282e"
"4067c3584ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045defc044a09325626"
"e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57ebf30b94fa"
"82523e86feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0"
"829a48d422fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"
"2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2721dea3bf63f23d0"
"dbe53fcafb2147df5ca495fa5a91c89b97eeab64ca2ce6bc5d3fd983c34c769f"
"e89204e2e8168561867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"
"74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e80371eb9"
"7f81375eecc1cb6347733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f87777ad1f45ae9500ec9"
"c5e2486c44a4a8f69dc8db48e86ec9c6e06f291b2a838af8d5c44a4eb3172062"
"d08f1bb2531d6460f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"),
("227eeb7b9d7d01f5769da05d205bbfcc8c69069134bccd3e1cf4f589f8e4ce0a"
"f29d115ef24bd625dd961e6830b54fa7d28f93435339774bb1e386c4fd5079e6"
"81b8f5896838b769da59b74a6c3181c81e220df848b1df78feb994a81167346"),
("d322a7353ead4efe440e2b4fda9c025a22f1a83185b98f5fc11e60de1b343f52"
"ea748db9e020307aaeb6db2c3a038a709779ac1f45e9dd320c855fdfa7251af0"
"930cdbd30f0ad2a81b2d19a2beaa14a7ff3fe32a30ffc4eed0a7bd04e85bfcdd"),
# Next 2 number generated by random.getrandbits(384)
("5c3747465cc36c270e8a35b10828d569c268a20eb78ac332e5e138e26c4454b9"
"0f756132e16dce72f18e859835e1f291"),
("eb2b5693babb7fbb0a76c196067cfdcb11457d9cf45e2fa01d7f427515392480"
"0600571fac3a5b263fdf57cd2c006497")
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
class EcpP256R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P256 fast reduction."""

View File

@ -1430,6 +1430,49 @@ exit:
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS */
void ecp_mod_p384_raw(char *input_N,
char *input_X,
char *result)
{
mbedtls_mpi_uint *X = NULL;
mbedtls_mpi_uint *N = NULL;
mbedtls_mpi_uint *res = NULL;
size_t limbs_X;
size_t limbs_N;
size_t limbs_res;
mbedtls_mpi_mod_modulus m;
mbedtls_mpi_mod_modulus_init(&m);
TEST_EQUAL(mbedtls_test_read_mpi_core(&X, &limbs_X, input_X), 0);
TEST_EQUAL(mbedtls_test_read_mpi_core(&N, &limbs_N, input_N), 0);
TEST_EQUAL(mbedtls_test_read_mpi_core(&res, &limbs_res, result), 0);
size_t limbs = limbs_N;
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
TEST_EQUAL(limbs_X, 2 * limbs);
TEST_EQUAL(limbs_res, limbs);
TEST_EQUAL(mbedtls_mpi_mod_modulus_setup(
&m, N, limbs,
MBEDTLS_MPI_MOD_REP_MONTGOMERY), 0);
TEST_EQUAL(mbedtls_ecp_mod_p384_raw(X, limbs_X), 0);
TEST_LE_U(mbedtls_mpi_core_bitlen(X, limbs_X), 384);
mbedtls_mpi_mod_raw_fix_quasi_reduction(X, &m);
ASSERT_COMPARE(X, bytes, res, bytes);
exit:
mbedtls_free(X);
mbedtls_free(res);
mbedtls_mpi_mod_modulus_free(&m);
mbedtls_free(N);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS */
void ecp_mod_p521_raw(char *input_N,
char *input_X,