Merge pull request #8114 from yanesca/threading_requirements_update

Refine thread safety requirements
This commit is contained in:
Gilles Peskine 2023-10-09 11:22:59 +00:00 committed by GitHub
commit 32743619a2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -67,16 +67,32 @@ In the medium to long term, performing a slow or blocking operation (for example
We may want to go directly to a more sophisticated approach because when a system works with a global lock, it's typically hard to get rid of it to get more fine-grained concurrency.
### Key destruction short-term requirements
#### Summary of guarantees in the short term
When `psa_destroy_key` returns:
1. The key identifier doesn't exist. Rationale: this is a functional requirement for persistent keys: the caller can immediately create a new key with the same identifier.
2. The resources from the key have been freed. Rationale: in a low-resource condition, this may be necessary for the caller to re-create a similar key, which should be possible.
3. The call must not block indefinitely, and in particular cannot wait for an event that is triggered by application code such as calling an abort function. Rationale: this may not strictly be a functional requirement, but it is an expectation `psa_destroy_key` does not block forever due to another thread, which could potentially be another process on a multi-process system. In particular, it is only acceptable for `psa_destroy_key` to block, when waiting for another thread to complete a PSA Cryptography API call that it had already started.
When `psa_destroy_key` is called on a key that is in use, guarantee 2. might be violated. (This is consistent with the requirement [“Correctness out of the box”](#correctness-out-of-the-box), as destroying a key while it's in use is undefined behavior.)
### Key destruction long-term requirements
As noted above in [“Correctness out of the box”](#correctness-out-of-the-box), when a key is destroyed, it's ok if `psa_destroy_key` allows copies of the key to live until ongoing operations using the key return. In the long term, it would be good to guarantee that `psa_destroy_key` wipes all copies of the key material.
The [PSA Crypto API specification](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#key-destruction) mandates that implementations make a best effort to ensure that the key material cannot be recovered. In the long term, it would be good to guarantee that `psa_destroy_key` wipes all copies of the key material.
#### Summary of guarantees when `psa_destroy_key` returns
#### Summary of guarantees in the long term
* The key identifier doesn't exist. Rationale: this is a functional requirement for persistent keys: the caller can immediately create a new key with the same identifier.
* The resources from the key have been freed. Rationale: in a low-resource condition, this may be necessary for the caller to re-create a similar key, which should be possible.
* The call must not block indefinitely, and in particular cannot wait for an event that is triggered by application code such as calling an abort function. Rationale: this may not strictly be a functional requirement, but it is an expectation `psa_destroy_key` does not block forever due to another thread, which could potentially be another process on a multi-process system.
* In the long term, no copy of the key material exists. Rationale: this is a security requirement. We do not have this requirement yet, but we need to document this as a security weakness, and we would like to become compliant.
When `psa_destroy_key` returns:
1. The key identifier doesn't exist. Rationale: this is a functional requirement for persistent keys: the caller can immediately create a new key with the same identifier.
2. The resources from the key have been freed. Rationale: in a low-resource condition, this may be necessary for the caller to re-create a similar key, which should be possible.
3. The call must not block indefinitely, and in particular cannot wait for an event that is triggered by application code such as calling an abort function. Rationale: this may not strictly be a functional requirement, but it is an expectation `psa_destroy_key` does not block forever due to another thread, which could potentially be another process on a multi-process system. In particular, it is only acceptable for `psa_destroy_key` to block, when waiting for another thread to complete a PSA Cryptography API call that it had already started.
4. No copy of the key material exists. Rationale: this is a security requirement. We do not have this requirement yet, but we need to document this as a security weakness, and we would like to satisfy this security requirement in the future.
As opposed to the short term requirements, all the above guarantees hold even if `psa_destroy_key` is called on a key that is in use.
## Resources to protect