mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-03-28 19:21:08 +00:00
Add comments to AEAD (non-PSA) examples
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
This commit is contained in:
parent
6349794648
commit
248b385f1b
@ -1,8 +1,29 @@
|
|||||||
/*
|
/**
|
||||||
* This is a companion to aead_psa.c, doing the same operations with the
|
* Cipher API multi-part AEAD demonstration.
|
||||||
* legacy Cipher API. The goal is that comparing the two programs will help people
|
|
||||||
* migrating to the PSA Crypto API.
|
|
||||||
*
|
*
|
||||||
|
* This program AEAD-encrypts a message, using the algorithm and key size
|
||||||
|
* specified on the command line, using the multi-part API.
|
||||||
|
*
|
||||||
|
* It comes with a companion program aead_psa.c, which does the same
|
||||||
|
* operations with the PSA Crypto API. The goal is that comparing the two
|
||||||
|
* programs will help people migrating to the PSA Crypto API.
|
||||||
|
*
|
||||||
|
* When used with multi-part AEAD operations, the `mbedtls_cipher_context`
|
||||||
|
* serves a triple purpose (1) hold the key, (2) store the algorithm when no
|
||||||
|
* operation is active, and (3) save progress information for the current
|
||||||
|
* operation. With PSA those roles are held by disinct objects: (1) a
|
||||||
|
* psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the
|
||||||
|
* algorithm, and (3) a psa_operation_t for multi-part progress.
|
||||||
|
*
|
||||||
|
* On the other hand, with PSA, the algorithms encodes the desired tag length;
|
||||||
|
* with Cipher the desired tag length needs to be tracked separately.
|
||||||
|
*
|
||||||
|
* This program and its companion aead_psa.c illustrate this by doing the
|
||||||
|
* same sequence of multi-part AEAD computation with both APIs; looking at the
|
||||||
|
* two side by side should make the differences and similarities clear.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
* Copyright The Mbed TLS Contributors
|
* Copyright The Mbed TLS Contributors
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
*
|
*
|
||||||
@ -19,26 +40,18 @@
|
|||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/* First include Mbed TLS headers to get the Mbed TLS configuration and
|
||||||
* When used with multi-part AEAD operations, the `mbedtls_cipher_context`
|
* platform definitions that we'll use in this program. Also include
|
||||||
* serves a triple purpose (1) hold the key, (2) store the algorithm when no
|
* standard C headers for functions we'll use here. */
|
||||||
* operation is active, and (3) save progress information for the current
|
|
||||||
* operation. With PSA those roles are held by disinct objects: (1) a
|
|
||||||
* psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the
|
|
||||||
* algorithm, and (3) a psa_operation_t for multi-part progress.
|
|
||||||
*
|
|
||||||
* On the other hand, with PSA, the algorithms encodes the desired tag length;
|
|
||||||
* with Cipher the desired tag length needs to be tracked separately.
|
|
||||||
*
|
|
||||||
* This program and its compation aead_psa.c illustrate this by doing the
|
|
||||||
* same sequence of multi-part AEAD computation with both APIs; looking at the
|
|
||||||
* two side by side should make the differences and similarities clear.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
#include "mbedtls/build_info.h"
|
#include "mbedtls/build_info.h"
|
||||||
|
|
||||||
|
#include "mbedtls/cipher.h"
|
||||||
|
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
/* If the build options we need are not enabled, compile a placeholder. */
|
||||||
#if !defined(MBEDTLS_CIPHER_C) || \
|
#if !defined(MBEDTLS_CIPHER_C) || \
|
||||||
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \
|
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \
|
||||||
!defined(MBEDTLS_CHACHAPOLY_C)
|
!defined(MBEDTLS_CHACHAPOLY_C)
|
||||||
@ -51,52 +64,67 @@ int main( void )
|
|||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
|
||||||
#include <string.h>
|
/* The real program starts here. */
|
||||||
|
|
||||||
#include "mbedtls/cipher.h"
|
const char usage[] = "Usage: aead_psa [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]";
|
||||||
|
|
||||||
/*
|
|
||||||
* Dummy data and helper functions
|
|
||||||
*/
|
|
||||||
const char usage[] = "Usage: aead_non_psa [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]";
|
|
||||||
|
|
||||||
|
/* Dummy data for encryption: IV/nonce, additional data, 2-part message */
|
||||||
const unsigned char iv1[12] = { 0x00 };
|
const unsigned char iv1[12] = { 0x00 };
|
||||||
const unsigned char add_data1[] = { 0x01, 0x02 };
|
const unsigned char add_data1[] = { 0x01, 0x02 };
|
||||||
const unsigned char msg1_part1[] = { 0x03, 0x04 };
|
const unsigned char msg1_part1[] = { 0x03, 0x04 };
|
||||||
const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 };
|
const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 };
|
||||||
|
|
||||||
|
/* Dummy data (2nd message) */
|
||||||
const unsigned char iv2[12] = { 0x10 };
|
const unsigned char iv2[12] = { 0x10 };
|
||||||
const unsigned char add_data2[] = { 0x11, 0x12 };
|
const unsigned char add_data2[] = { 0x11, 0x12 };
|
||||||
const unsigned char msg2_part1[] = { 0x13, 0x14 };
|
const unsigned char msg2_part1[] = { 0x13, 0x14 };
|
||||||
const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 };
|
const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 };
|
||||||
|
|
||||||
|
/* This must at least the sum of the length of the 2 parts for each message.
|
||||||
|
* This is a macro for the sake of compilers with insufficient C99 support. */
|
||||||
#define MSG_MAX_SIZE 5
|
#define MSG_MAX_SIZE 5
|
||||||
|
|
||||||
|
/* Dummy key material - never do this in production!
|
||||||
|
* 32-byte is enough to all the key size supported by this program. */
|
||||||
const unsigned char key_bytes[32] = { 0x2a };
|
const unsigned char key_bytes[32] = { 0x2a };
|
||||||
|
|
||||||
void print_out( const char *title, unsigned char *out, size_t len )
|
/* Print the contents of a buffer in hex */
|
||||||
|
void print_buf( const char *title, unsigned char *buf, size_t len )
|
||||||
{
|
{
|
||||||
printf( "%s:", title );
|
printf( "%s:", title );
|
||||||
for( size_t i = 0; i < len; i++ )
|
for( size_t i = 0; i < len; i++ )
|
||||||
printf( " %02x", out[i] );
|
printf( " %02x", buf[i] );
|
||||||
printf( "\n" );
|
printf( "\n" );
|
||||||
}
|
}
|
||||||
|
|
||||||
#define CHK( code ) \
|
/* Run an Mbed TLS function and bail out if it fails. */
|
||||||
do { \
|
#define CHK( expr ) \
|
||||||
ret = code; \
|
do \
|
||||||
if( ret != 0 ) { \
|
{ \
|
||||||
printf( "%03d: ret = -0x%04x\n", __LINE__, (unsigned) -ret ); \
|
ret = ( expr ); \
|
||||||
goto exit; \
|
if( ret != 0 ) \
|
||||||
} \
|
{ \
|
||||||
|
printf( "Error %d at line %d: %s\n", \
|
||||||
|
ret, \
|
||||||
|
__LINE__, \
|
||||||
|
#expr ); \
|
||||||
|
goto exit; \
|
||||||
|
} \
|
||||||
} while( 0 )
|
} while( 0 )
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare encryption material:
|
||||||
|
* - interpret command-line argument
|
||||||
|
* - set up key
|
||||||
|
* - outputs: context and tag length, which together hold all the information
|
||||||
|
*/
|
||||||
static int aead_prepare( const char *info,
|
static int aead_prepare( const char *info,
|
||||||
mbedtls_cipher_context_t *ctx,
|
mbedtls_cipher_context_t *ctx,
|
||||||
size_t *tag_len )
|
size_t *tag_len )
|
||||||
{
|
{
|
||||||
int ret;
|
int ret;
|
||||||
|
|
||||||
|
/* Convert arg to type + tag_len */
|
||||||
mbedtls_cipher_type_t type;
|
mbedtls_cipher_type_t type;
|
||||||
if( strcmp( info, "aes128-gcm" ) == 0 ) {
|
if( strcmp( info, "aes128-gcm" ) == 0 ) {
|
||||||
type = MBEDTLS_CIPHER_AES_128_GCM;
|
type = MBEDTLS_CIPHER_AES_128_GCM;
|
||||||
@ -115,9 +143,11 @@ static int aead_prepare( const char *info,
|
|||||||
return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
|
return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Prepare context for the given type */
|
||||||
CHK( mbedtls_cipher_setup( ctx,
|
CHK( mbedtls_cipher_setup( ctx,
|
||||||
mbedtls_cipher_info_from_type( type ) ) );
|
mbedtls_cipher_info_from_type( type ) ) );
|
||||||
|
|
||||||
|
/* Import key */
|
||||||
int key_len = mbedtls_cipher_get_key_bitlen( ctx );
|
int key_len = mbedtls_cipher_get_key_bitlen( ctx );
|
||||||
CHK( mbedtls_cipher_setkey( ctx, key_bytes, key_len, MBEDTLS_ENCRYPT ) );
|
CHK( mbedtls_cipher_setkey( ctx, key_bytes, key_len, MBEDTLS_ENCRYPT ) );
|
||||||
|
|
||||||
@ -125,9 +155,15 @@ exit:
|
|||||||
return( ret );
|
return( ret );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Print out some information.
|
||||||
|
*
|
||||||
|
* All of this information was present in the command line argument, but his
|
||||||
|
* function demonstrates how each piece can be recovered from (ctx, tag_len).
|
||||||
|
*/
|
||||||
static void aead_info( const mbedtls_cipher_context_t *ctx, size_t tag_len )
|
static void aead_info( const mbedtls_cipher_context_t *ctx, size_t tag_len )
|
||||||
{
|
{
|
||||||
// no convenient way to get the cipher type (for example, AES)
|
// no convenient way to get the just cipher type (for example, AES)
|
||||||
const char *ciph = "???";
|
const char *ciph = "???";
|
||||||
int key_bits = mbedtls_cipher_get_key_bitlen( ctx );
|
int key_bits = mbedtls_cipher_get_key_bitlen( ctx );
|
||||||
mbedtls_cipher_mode_t mode = mbedtls_cipher_get_cipher_mode( ctx );
|
mbedtls_cipher_mode_t mode = mbedtls_cipher_get_cipher_mode( ctx );
|
||||||
@ -139,6 +175,9 @@ static void aead_info( const mbedtls_cipher_context_t *ctx, size_t tag_len )
|
|||||||
printf( "cipher: %s, %d, %s, %u\n", ciph, key_bits, mode_str, (unsigned) tag_len );
|
printf( "cipher: %s, %d, %s, %u\n", ciph, key_bits, mode_str, (unsigned) tag_len );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Encrypt a 2-part message.
|
||||||
|
*/
|
||||||
static int aead_encrypt( mbedtls_cipher_context_t *ctx, size_t tag_len,
|
static int aead_encrypt( mbedtls_cipher_context_t *ctx, size_t tag_len,
|
||||||
const unsigned char *iv, size_t iv_len,
|
const unsigned char *iv, size_t iv_len,
|
||||||
const unsigned char *ad, size_t ad_len,
|
const unsigned char *ad, size_t ad_len,
|
||||||
@ -163,12 +202,15 @@ static int aead_encrypt( mbedtls_cipher_context_t *ctx, size_t tag_len,
|
|||||||
p += tag_len;
|
p += tag_len;
|
||||||
|
|
||||||
olen = p - out;
|
olen = p - out;
|
||||||
print_out( "cipher", out, olen );
|
print_buf( "cipher", out, olen );
|
||||||
|
|
||||||
exit:
|
exit:
|
||||||
return( ret );
|
return( ret );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* AEAD demo: set up key/alg, print out info, encrypt messages.
|
||||||
|
*/
|
||||||
static int aead_demo( const char *info )
|
static int aead_demo( const char *info )
|
||||||
{
|
{
|
||||||
int ret = 0;
|
int ret = 0;
|
||||||
@ -203,13 +245,20 @@ exit:
|
|||||||
*/
|
*/
|
||||||
int main( int argc, char **argv )
|
int main( int argc, char **argv )
|
||||||
{
|
{
|
||||||
|
/* Check usage */
|
||||||
if( argc != 2 )
|
if( argc != 2 )
|
||||||
{
|
{
|
||||||
puts( usage );
|
puts( usage );
|
||||||
return( 1 );
|
return( 1 );
|
||||||
}
|
}
|
||||||
|
|
||||||
aead_demo( argv[1] );
|
int ret;
|
||||||
|
|
||||||
|
/* Run the demo */
|
||||||
|
CHK( aead_demo( argv[1] ) );
|
||||||
|
|
||||||
|
exit:
|
||||||
|
return( ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE );
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -1,9 +1,29 @@
|
|||||||
/*
|
/**
|
||||||
* This is a simple example of multi-part AEAD computation using the PSA
|
* PSA API multi-part AEAD demonstration.
|
||||||
* Crypto API. It comes with a companion program aead_non_psa.c, which does
|
|
||||||
* the same operations with the legacy Cipher API. The goal is that comparing the
|
|
||||||
* two programs will help people migrating to the PSA Crypto API.
|
|
||||||
*
|
*
|
||||||
|
* This program AEAD-encrypts a message, using the algorithm and key size
|
||||||
|
* specified on the command line, using the multi-part API.
|
||||||
|
*
|
||||||
|
* It comes with a companion program aead_non_psa.c, which does the same
|
||||||
|
* operations with the legacy Cipher API. The goal is that comparing the two
|
||||||
|
* programs will help people migrating to the PSA Crypto API.
|
||||||
|
*
|
||||||
|
* When used with multi-part AEAD operations, the `mbedtls_cipher_context`
|
||||||
|
* serves a triple purpose (1) hold the key, (2) store the algorithm when no
|
||||||
|
* operation is active, and (3) save progress information for the current
|
||||||
|
* operation. With PSA those roles are held by disinct objects: (1) a
|
||||||
|
* psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the
|
||||||
|
* algorithm, and (3) a psa_operation_t for multi-part progress.
|
||||||
|
*
|
||||||
|
* On the other hand, with PSA, the algorithms encodes the desired tag length;
|
||||||
|
* with Cipher the desired tag length needs to be tracked separately.
|
||||||
|
*
|
||||||
|
* This program and its companion aead_non_psa.c illustrate this by doing the
|
||||||
|
* same sequence of multi-part AEAD computation with both APIs; looking at the
|
||||||
|
* two side by side should make the differences and similarities clear.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
* Copyright The Mbed TLS Contributors
|
* Copyright The Mbed TLS Contributors
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
*
|
*
|
||||||
@ -20,26 +40,18 @@
|
|||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/* First include Mbed TLS headers to get the Mbed TLS configuration and
|
||||||
* When used with multi-part AEAD operations, the `mbedtls_cipher_context`
|
* platform definitions that we'll use in this program. Also include
|
||||||
* serves a triple purpose (1) hold the key, (2) store the algorithm when no
|
* standard C headers for functions we'll use here. */
|
||||||
* operation is active, and (3) save progress information for the current
|
|
||||||
* operation. With PSA those roles are held by disinct objects: (1) a
|
|
||||||
* psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the
|
|
||||||
* algorithm, and (3) a psa_operation_t for multi-part progress.
|
|
||||||
*
|
|
||||||
* On the other hand, with PSA, the algorithms encodes the desired tag length;
|
|
||||||
* with Cipher the desired tag length needs to be tracked separately.
|
|
||||||
*
|
|
||||||
* This program and its compation aead_non_psa.c illustrate this by doing the
|
|
||||||
* same sequence of multi-part AEAD computation with both APIs; looking at the
|
|
||||||
* two side by side should make the differences and similarities clear.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
#include "mbedtls/build_info.h"
|
#include "mbedtls/build_info.h"
|
||||||
|
|
||||||
|
#include "psa/crypto.h"
|
||||||
|
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
/* If the build options we need are not enabled, compile a placeholder. */
|
||||||
#if !defined(MBEDTLS_PSA_CRYPTO_C) || \
|
#if !defined(MBEDTLS_PSA_CRYPTO_C) || \
|
||||||
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \
|
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \
|
||||||
!defined(MBEDTLS_CHACHAPOLY_C) || \
|
!defined(MBEDTLS_CHACHAPOLY_C) || \
|
||||||
@ -54,52 +66,68 @@ int main( void )
|
|||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
|
||||||
#include <string.h>
|
/* The real program starts here. */
|
||||||
|
|
||||||
#include "psa/crypto.h"
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Dummy data and helper functions
|
|
||||||
*/
|
|
||||||
const char usage[] = "Usage: aead_psa [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]";
|
const char usage[] = "Usage: aead_psa [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]";
|
||||||
|
|
||||||
|
/* Dummy data for encryption: IV/nonce, additional data, 2-part message */
|
||||||
const unsigned char iv1[12] = { 0x00 };
|
const unsigned char iv1[12] = { 0x00 };
|
||||||
const unsigned char add_data1[] = { 0x01, 0x02 };
|
const unsigned char add_data1[] = { 0x01, 0x02 };
|
||||||
const unsigned char msg1_part1[] = { 0x03, 0x04 };
|
const unsigned char msg1_part1[] = { 0x03, 0x04 };
|
||||||
const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 };
|
const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 };
|
||||||
|
|
||||||
|
/* Dummy data (2nd message) */
|
||||||
const unsigned char iv2[12] = { 0x10 };
|
const unsigned char iv2[12] = { 0x10 };
|
||||||
const unsigned char add_data2[] = { 0x11, 0x12 };
|
const unsigned char add_data2[] = { 0x11, 0x12 };
|
||||||
const unsigned char msg2_part1[] = { 0x13, 0x14 };
|
const unsigned char msg2_part1[] = { 0x13, 0x14 };
|
||||||
const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 };
|
const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 };
|
||||||
|
|
||||||
|
/* This must at least the sum of the length of the 2 parts for each message.
|
||||||
|
* This is a macro for the sake of compilers with insufficient C99 support. */
|
||||||
#define MSG_MAX_SIZE 5
|
#define MSG_MAX_SIZE 5
|
||||||
|
|
||||||
|
/* Dummy key material - never do this in production!
|
||||||
|
* 32-byte is enough to all the key size supported by this program. */
|
||||||
const unsigned char key_bytes[32] = { 0x2a };
|
const unsigned char key_bytes[32] = { 0x2a };
|
||||||
|
|
||||||
void print_out( const char *title, unsigned char *out, size_t len )
|
/* Print the contents of a buffer in hex */
|
||||||
|
void print_buf( const char *title, uint8_t *buf, size_t len )
|
||||||
{
|
{
|
||||||
printf( "%s:", title );
|
printf( "%s:", title );
|
||||||
for( size_t i = 0; i < len; i++ )
|
for( size_t i = 0; i < len; i++ )
|
||||||
printf( " %02x", out[i] );
|
printf( " %02x", buf[i] );
|
||||||
printf( "\n" );
|
printf( "\n" );
|
||||||
}
|
}
|
||||||
|
|
||||||
#define CHK( code ) \
|
/* Run a PSA function and bail out if it fails. */
|
||||||
do { \
|
#define PSA_CHECK( expr ) \
|
||||||
status = code; \
|
do \
|
||||||
if( status != PSA_SUCCESS ) { \
|
{ \
|
||||||
printf( "%03d: status = %d\n", __LINE__, status ); \
|
status = ( expr ); \
|
||||||
goto exit; \
|
if( status != PSA_SUCCESS ) \
|
||||||
} \
|
{ \
|
||||||
} while( 0 )
|
printf( "Error %d at line %d: %s\n", \
|
||||||
|
(int) status, \
|
||||||
|
__LINE__, \
|
||||||
|
#expr ); \
|
||||||
|
goto exit; \
|
||||||
|
} \
|
||||||
|
} \
|
||||||
|
while( 0 )
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Prepare encryption material:
|
||||||
|
* - interpret command-line argument
|
||||||
|
* - set up key
|
||||||
|
* - outputs: key and algorithm, which together hold all the information
|
||||||
|
*/
|
||||||
static psa_status_t aead_prepare( const char *info,
|
static psa_status_t aead_prepare( const char *info,
|
||||||
psa_key_id_t *key,
|
psa_key_id_t *key,
|
||||||
psa_algorithm_t *alg )
|
psa_algorithm_t *alg )
|
||||||
{
|
{
|
||||||
psa_status_t status;
|
psa_status_t status;
|
||||||
|
|
||||||
|
/* Convert arg to alg + key_bits + key_type */
|
||||||
size_t key_bits;
|
size_t key_bits;
|
||||||
psa_key_type_t key_type;
|
psa_key_type_t key_type;
|
||||||
if( strcmp( info, "aes128-gcm" ) == 0 ) {
|
if( strcmp( info, "aes128-gcm" ) == 0 ) {
|
||||||
@ -123,18 +151,26 @@ static psa_status_t aead_prepare( const char *info,
|
|||||||
return( PSA_ERROR_INVALID_ARGUMENT );
|
return( PSA_ERROR_INVALID_ARGUMENT );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Prepare key attibutes */
|
||||||
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
|
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
|
||||||
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
|
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
|
||||||
psa_set_key_algorithm( &attributes, *alg );
|
psa_set_key_algorithm( &attributes, *alg );
|
||||||
psa_set_key_type( &attributes, key_type );
|
psa_set_key_type( &attributes, key_type );
|
||||||
psa_set_key_bits( &attributes, key_bits );
|
psa_set_key_bits( &attributes, key_bits ); // optional
|
||||||
|
|
||||||
CHK( psa_import_key( &attributes, key_bytes, key_bits / 8, key ) );
|
/* Import key */
|
||||||
|
PSA_CHECK( psa_import_key( &attributes, key_bytes, key_bits / 8, key ) );
|
||||||
|
|
||||||
exit:
|
exit:
|
||||||
return( status );
|
return( status );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Print out some information.
|
||||||
|
*
|
||||||
|
* All of this information was present in the command line argument, but his
|
||||||
|
* function demonstrates how each piece can be recovered from (key, alg).
|
||||||
|
*/
|
||||||
static void aead_info( psa_key_id_t key, psa_algorithm_t alg )
|
static void aead_info( psa_key_id_t key, psa_algorithm_t alg )
|
||||||
{
|
{
|
||||||
psa_key_attributes_t attr = PSA_KEY_ATTRIBUTES_INIT;
|
psa_key_attributes_t attr = PSA_KEY_ATTRIBUTES_INIT;
|
||||||
@ -155,6 +191,9 @@ static void aead_info( psa_key_id_t key, psa_algorithm_t alg )
|
|||||||
type_str, (unsigned) key_bits, base_str, (unsigned) tag_len );
|
type_str, (unsigned) key_bits, base_str, (unsigned) tag_len );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Encrypt a 2-part message.
|
||||||
|
*/
|
||||||
static int aead_encrypt( psa_key_id_t key, psa_algorithm_t alg,
|
static int aead_encrypt( psa_key_id_t key, psa_algorithm_t alg,
|
||||||
const unsigned char *iv, size_t iv_len,
|
const unsigned char *iv, size_t iv_len,
|
||||||
const unsigned char *ad, size_t ad_len,
|
const unsigned char *ad, size_t ad_len,
|
||||||
@ -168,29 +207,31 @@ static int aead_encrypt( psa_key_id_t key, psa_algorithm_t alg,
|
|||||||
unsigned char tag[PSA_AEAD_TAG_MAX_SIZE];
|
unsigned char tag[PSA_AEAD_TAG_MAX_SIZE];
|
||||||
|
|
||||||
psa_aead_operation_t op = PSA_AEAD_OPERATION_INIT;
|
psa_aead_operation_t op = PSA_AEAD_OPERATION_INIT;
|
||||||
CHK( psa_aead_encrypt_setup( &op, key, alg ) );
|
PSA_CHECK( psa_aead_encrypt_setup( &op, key, alg ) );
|
||||||
|
|
||||||
CHK( psa_aead_set_nonce( &op, iv, iv_len ) );
|
PSA_CHECK( psa_aead_set_nonce( &op, iv, iv_len ) );
|
||||||
CHK( psa_aead_update_ad( &op, ad, ad_len ) );
|
PSA_CHECK( psa_aead_update_ad( &op, ad, ad_len ) );
|
||||||
CHK( psa_aead_update( &op, pa, pa_len, p, end - p, &olen ) );
|
PSA_CHECK( psa_aead_update( &op, pa, pa_len, p, end - p, &olen ) );
|
||||||
p += olen;
|
p += olen;
|
||||||
CHK( psa_aead_update( &op, pb, pb_len, p, end - p, &olen ) );
|
PSA_CHECK( psa_aead_update( &op, pb, pb_len, p, end - p, &olen ) );
|
||||||
p += olen;
|
p += olen;
|
||||||
CHK( psa_aead_finish( &op, p, end - p, &olen,
|
PSA_CHECK( psa_aead_finish( &op, p, end - p, &olen,
|
||||||
tag, sizeof( tag ), &olen_tag ) );
|
tag, sizeof( tag ), &olen_tag ) );
|
||||||
p += olen;
|
p += olen;
|
||||||
memcpy( p, tag, olen_tag );
|
memcpy( p, tag, olen_tag );
|
||||||
p += olen_tag;
|
p += olen_tag;
|
||||||
|
|
||||||
olen = p - out;
|
olen = p - out;
|
||||||
print_out( "out", out, olen );
|
print_buf( "out", out, olen );
|
||||||
|
|
||||||
exit:
|
exit:
|
||||||
/* required on errors, harmless on success */
|
psa_aead_abort( &op ); // required on errors, harmless on success
|
||||||
psa_aead_abort( &op );
|
|
||||||
return( status );
|
return( status );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* AEAD demo: set up key/alg, print out info, encrypt messages.
|
||||||
|
*/
|
||||||
static psa_status_t aead_demo( const char *info )
|
static psa_status_t aead_demo( const char *info )
|
||||||
{
|
{
|
||||||
psa_status_t status;
|
psa_status_t status;
|
||||||
@ -198,15 +239,15 @@ static psa_status_t aead_demo( const char *info )
|
|||||||
psa_key_id_t key;
|
psa_key_id_t key;
|
||||||
psa_algorithm_t alg;
|
psa_algorithm_t alg;
|
||||||
|
|
||||||
CHK( aead_prepare( info, &key, &alg ) );
|
PSA_CHECK( aead_prepare( info, &key, &alg ) );
|
||||||
|
|
||||||
aead_info( key, alg );
|
aead_info( key, alg );
|
||||||
|
|
||||||
CHK( aead_encrypt( key, alg,
|
PSA_CHECK( aead_encrypt( key, alg,
|
||||||
iv1, sizeof( iv1 ), add_data1, sizeof( add_data1 ),
|
iv1, sizeof( iv1 ), add_data1, sizeof( add_data1 ),
|
||||||
msg1_part1, sizeof( msg1_part1 ),
|
msg1_part1, sizeof( msg1_part1 ),
|
||||||
msg1_part2, sizeof( msg1_part2 ) ) );
|
msg1_part2, sizeof( msg1_part2 ) ) );
|
||||||
CHK( aead_encrypt( key, alg,
|
PSA_CHECK( aead_encrypt( key, alg,
|
||||||
iv2, sizeof( iv2 ), add_data2, sizeof( add_data2 ),
|
iv2, sizeof( iv2 ), add_data2, sizeof( add_data2 ),
|
||||||
msg2_part1, sizeof( msg2_part1 ),
|
msg2_part1, sizeof( msg2_part1 ),
|
||||||
msg2_part2, sizeof( msg2_part2 ) ) );
|
msg2_part2, sizeof( msg2_part2 ) ) );
|
||||||
@ -222,17 +263,26 @@ exit:
|
|||||||
*/
|
*/
|
||||||
int main( int argc, char **argv )
|
int main( int argc, char **argv )
|
||||||
{
|
{
|
||||||
|
psa_status_t status = PSA_SUCCESS;
|
||||||
|
|
||||||
|
/* Check usage */
|
||||||
if( argc != 2 )
|
if( argc != 2 )
|
||||||
{
|
{
|
||||||
puts( usage );
|
puts( usage );
|
||||||
return( 1 );
|
return( EXIT_FAILURE );
|
||||||
}
|
}
|
||||||
|
|
||||||
psa_status_t status = psa_crypto_init();
|
/* Initialize the PSA crypto library. */
|
||||||
if( status != PSA_SUCCESS )
|
PSA_CHECK( psa_crypto_init( ) );
|
||||||
printf( "psa init: %d\n", status );
|
|
||||||
|
|
||||||
aead_demo( argv[1] );
|
/* Run the demo */
|
||||||
|
PSA_CHECK( aead_demo( argv[1] ) );
|
||||||
|
|
||||||
|
/* Deinitialize the PSA crypto library. */
|
||||||
|
mbedtls_psa_crypto_free( );
|
||||||
|
|
||||||
|
exit:
|
||||||
|
return( status == PSA_SUCCESS ? EXIT_SUCCESS : EXIT_FAILURE );
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
x
Reference in New Issue
Block a user