mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-02-22 09:40:09 +00:00
Rm multiplication using NAF
Comb method is at most 1% slower for random points, and is way faster for fixed point (repeated).
This commit is contained in:
parent
04a0225388
commit
09ceaf49d0
@ -476,14 +476,9 @@ int ecp_sub( const ecp_group *grp, ecp_point *R,
|
||||
* has very low overhead, it is recommended to always provide
|
||||
* a non-NULL f_rng parameter when using secret inputs.
|
||||
*/
|
||||
// Temporary, WIP
|
||||
int ecp_mul_wnaf( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
|
||||
int ecp_mul_comb( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
|
||||
#define ecp_mul ecp_mul_comb
|
||||
int ecp_mul( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
|
||||
|
||||
/**
|
||||
* \brief Check that a point is a valid public key on this curve
|
||||
|
291
library/ecp.c
291
library/ecp.c
@ -1190,105 +1190,6 @@ cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute a modified width-w non-adjacent form (NAF) of a number,
|
||||
* with a fixed pattern for resistance to simple timing attacks (even SPA),
|
||||
* see [1]. (The resulting multiplication algorithm can also been seen as a
|
||||
* modification of 2^w-ary multiplication, with signed coefficients, all of
|
||||
* them odd.)
|
||||
*
|
||||
* Input:
|
||||
* m must be an odd positive mpi less than w * k bits long
|
||||
* x must be an array of k elements
|
||||
* w must be less than a certain maximum (currently 8)
|
||||
*
|
||||
* The result is a sequence x[0], ..., x[k-1] with x[i] in the range
|
||||
* - 2^(width - 1) .. 2^(width - 1) - 1 such that
|
||||
* m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
|
||||
* + 2^((k-1) * width) * (2 * x[k-1] + 1)
|
||||
*
|
||||
* Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
|
||||
* p. 335 of the cited reference, here we return only u, not d_w since
|
||||
* it is known that the other d_w[j] will be 0. Moreover, the returned
|
||||
* string doesn't actually store u_i but x_i = u_i / 2 since it is known
|
||||
* that u_i is odd. Also, since we always select a positive value for d
|
||||
* mod 2^w, we don't need to check the sign of u[i-1] when the reference
|
||||
* does. Finally, there is an off-by-one error in the reference: the
|
||||
* last index should be k-1, not k.
|
||||
*/
|
||||
static int ecp_w_naf_fixed( signed char x[], size_t k,
|
||||
unsigned char w, const mpi *m )
|
||||
{
|
||||
int ret;
|
||||
unsigned int i, u, mask, carry;
|
||||
mpi M;
|
||||
|
||||
mpi_init( &M );
|
||||
|
||||
MPI_CHK( mpi_copy( &M, m ) );
|
||||
mask = ( 1 << w ) - 1;
|
||||
carry = 1 << ( w - 1 );
|
||||
|
||||
for( i = 0; i < k; i++ )
|
||||
{
|
||||
u = M.p[0] & mask;
|
||||
|
||||
if( ( u & 1 ) == 0 && i > 0 )
|
||||
x[i - 1] -= carry;
|
||||
|
||||
x[i] = u >> 1;
|
||||
mpi_shift_r( &M, w );
|
||||
}
|
||||
|
||||
/*
|
||||
* We should have consumed all bits, unless the input value was too big
|
||||
*/
|
||||
if( mpi_cmp_int( &M, 0 ) != 0 )
|
||||
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
|
||||
|
||||
cleanup:
|
||||
|
||||
mpi_free( &M );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Precompute odd multiples of P up to (2 * t_len - 1) P.
|
||||
* The table is filled with T[i] = (2 * i + 1) P.
|
||||
*/
|
||||
static int ecp_precompute( const ecp_group *grp,
|
||||
ecp_point T[], size_t t_len,
|
||||
const ecp_point *P )
|
||||
{
|
||||
int ret;
|
||||
size_t i;
|
||||
ecp_point PP;
|
||||
ecp_point *TT[ 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) ];
|
||||
|
||||
ecp_point_init( &PP );
|
||||
|
||||
MPI_CHK( ecp_add( grp, &PP, P, P ) );
|
||||
|
||||
MPI_CHK( ecp_copy( &T[0], P ) );
|
||||
|
||||
for( i = 1; i < t_len; i++ )
|
||||
MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
|
||||
|
||||
/*
|
||||
* T[0] = P already has normalized coordinates, normalize others
|
||||
*/
|
||||
for( i = 1; i < t_len; i++ )
|
||||
TT[i-1] = &T[i];
|
||||
MPI_CHK( ecp_normalize_many( grp, TT, t_len - 1 ) );
|
||||
|
||||
cleanup:
|
||||
|
||||
ecp_point_free( &PP );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Randomize jacobian coordinates:
|
||||
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
|
||||
@ -1334,192 +1235,6 @@ cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Maximum length of the precomputed table
|
||||
*/
|
||||
#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
|
||||
|
||||
/*
|
||||
* Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
|
||||
* (that is: grp->nbits / w + 1)
|
||||
* Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
|
||||
*/
|
||||
#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_BITS / 2 + 1 )
|
||||
|
||||
/*
|
||||
* Integer multiplication: R = m * P
|
||||
*
|
||||
* Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
|
||||
*
|
||||
* This function executes a fixed number of operations for
|
||||
* random m in the range 0 .. 2^nbits - 1.
|
||||
*
|
||||
* As an additional countermeasure against potential timing attacks,
|
||||
* we randomize coordinates before each addition. This was suggested as a
|
||||
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
|
||||
* we use jacobian coordinates, not standard projective coordinates).
|
||||
*/
|
||||
int ecp_mul_wnaf( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
||||
{
|
||||
int ret;
|
||||
unsigned char w, m_is_odd, p_eq_g;
|
||||
size_t pre_len = 1, naf_len, i, j;
|
||||
signed char naf[ MAX_NAF_LEN ];
|
||||
ecp_point Q, *T = NULL, S[2];
|
||||
mpi M;
|
||||
|
||||
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
|
||||
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
||||
|
||||
mpi_init( &M );
|
||||
ecp_point_init( &Q );
|
||||
ecp_point_init( &S[0] );
|
||||
ecp_point_init( &S[1] );
|
||||
|
||||
/*
|
||||
* Check if P == G
|
||||
*/
|
||||
p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
|
||||
mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
|
||||
mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
|
||||
|
||||
/*
|
||||
* If P == G, pre-compute a lot of points: this will be re-used later,
|
||||
* otherwise, choose window size depending on curve size
|
||||
*/
|
||||
if( p_eq_g )
|
||||
w = POLARSSL_ECP_WINDOW_SIZE;
|
||||
else
|
||||
w = grp->nbits >= 512 ? 6 :
|
||||
grp->nbits >= 224 ? 5 :
|
||||
4;
|
||||
|
||||
/*
|
||||
* Make sure w is within the limits.
|
||||
* The last test ensures that none of the precomputed points is zero,
|
||||
* which wouldn't be handled correctly by ecp_normalize_many().
|
||||
* It is only useful for very small curves as used in the test suite.
|
||||
*/
|
||||
if( w > POLARSSL_ECP_WINDOW_SIZE )
|
||||
w = POLARSSL_ECP_WINDOW_SIZE;
|
||||
if( w < 2 || w >= grp->nbits )
|
||||
w = 2;
|
||||
|
||||
pre_len <<= ( w - 1 );
|
||||
naf_len = grp->nbits / w + 1;
|
||||
|
||||
/*
|
||||
* Prepare precomputed points: if P == G we want to
|
||||
* use grp->T if already initialized, or initiliaze it.
|
||||
*/
|
||||
if( ! p_eq_g || grp->T == NULL )
|
||||
{
|
||||
T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
|
||||
if( T == NULL )
|
||||
{
|
||||
ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
for( i = 0; i < pre_len; i++ )
|
||||
ecp_point_init( &T[i] );
|
||||
|
||||
MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
|
||||
|
||||
if( p_eq_g )
|
||||
{
|
||||
grp->T = T;
|
||||
grp->T_size = pre_len;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
T = grp->T;
|
||||
|
||||
/* Should never happen, but we want to be extra sure */
|
||||
if( pre_len != grp->T_size )
|
||||
{
|
||||
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Make sure M is odd (M = m + 1 or M = m + 2)
|
||||
* later we'll get m * P by subtracting P or 2 * P to M * P.
|
||||
*/
|
||||
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
|
||||
|
||||
MPI_CHK( mpi_copy( &M, m ) );
|
||||
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
|
||||
|
||||
/*
|
||||
* Compute the fixed-pattern NAF of M
|
||||
*/
|
||||
MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
|
||||
|
||||
/*
|
||||
* Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
|
||||
* at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
|
||||
*
|
||||
* If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
|
||||
* Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
|
||||
* == T[ - naf[i] - 1 ]
|
||||
*/
|
||||
MPI_CHK( ecp_set_zero( &Q ) );
|
||||
i = naf_len - 1;
|
||||
while( 1 )
|
||||
{
|
||||
/* Countermeasure (see comments above) */
|
||||
if( f_rng != NULL )
|
||||
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
|
||||
|
||||
if( naf[i] < 0 )
|
||||
{
|
||||
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
|
||||
}
|
||||
|
||||
if( i == 0 )
|
||||
break;
|
||||
i--;
|
||||
|
||||
for( j = 0; j < w; j++ )
|
||||
{
|
||||
MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Now get m * P from M * P
|
||||
*/
|
||||
MPI_CHK( ecp_copy( &S[0], P ) );
|
||||
MPI_CHK( ecp_add( grp, &S[1], P, P ) );
|
||||
MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
|
||||
|
||||
|
||||
cleanup:
|
||||
|
||||
if( T != NULL && ! p_eq_g )
|
||||
{
|
||||
for( i = 0; i < pre_len; i++ )
|
||||
ecp_point_free( &T[i] );
|
||||
polarssl_free( T );
|
||||
}
|
||||
|
||||
ecp_point_free( &S[1] );
|
||||
ecp_point_free( &S[0] );
|
||||
ecp_point_free( &Q );
|
||||
mpi_free( &M );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Check and define parameters used by the comb method (see below for details)
|
||||
*/
|
||||
@ -1714,9 +1429,9 @@ cleanup:
|
||||
/*
|
||||
* Multiplication using the comb method
|
||||
*/
|
||||
int ecp_mul_comb( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
||||
int ecp_mul( ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
||||
{
|
||||
int ret;
|
||||
unsigned char w, m_is_odd, p_eq_g;
|
||||
|
Loading…
x
Reference in New Issue
Block a user