Rm multiplication using NAF

Comb method is at most 1% slower for random points,
and is way faster for fixed point (repeated).
This commit is contained in:
Manuel Pégourié-Gonnard 2013-11-20 23:06:14 +01:00
parent 04a0225388
commit 09ceaf49d0
2 changed files with 6 additions and 296 deletions

View File

@ -476,14 +476,9 @@ int ecp_sub( const ecp_group *grp, ecp_point *R,
* has very low overhead, it is recommended to always provide
* a non-NULL f_rng parameter when using secret inputs.
*/
// Temporary, WIP
int ecp_mul_wnaf( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
int ecp_mul_comb( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
#define ecp_mul ecp_mul_comb
int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
/**
* \brief Check that a point is a valid public key on this curve

View File

@ -1190,105 +1190,6 @@ cleanup:
return( ret );
}
/*
* Compute a modified width-w non-adjacent form (NAF) of a number,
* with a fixed pattern for resistance to simple timing attacks (even SPA),
* see [1]. (The resulting multiplication algorithm can also been seen as a
* modification of 2^w-ary multiplication, with signed coefficients, all of
* them odd.)
*
* Input:
* m must be an odd positive mpi less than w * k bits long
* x must be an array of k elements
* w must be less than a certain maximum (currently 8)
*
* The result is a sequence x[0], ..., x[k-1] with x[i] in the range
* - 2^(width - 1) .. 2^(width - 1) - 1 such that
* m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
* + 2^((k-1) * width) * (2 * x[k-1] + 1)
*
* Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
* p. 335 of the cited reference, here we return only u, not d_w since
* it is known that the other d_w[j] will be 0. Moreover, the returned
* string doesn't actually store u_i but x_i = u_i / 2 since it is known
* that u_i is odd. Also, since we always select a positive value for d
* mod 2^w, we don't need to check the sign of u[i-1] when the reference
* does. Finally, there is an off-by-one error in the reference: the
* last index should be k-1, not k.
*/
static int ecp_w_naf_fixed( signed char x[], size_t k,
unsigned char w, const mpi *m )
{
int ret;
unsigned int i, u, mask, carry;
mpi M;
mpi_init( &M );
MPI_CHK( mpi_copy( &M, m ) );
mask = ( 1 << w ) - 1;
carry = 1 << ( w - 1 );
for( i = 0; i < k; i++ )
{
u = M.p[0] & mask;
if( ( u & 1 ) == 0 && i > 0 )
x[i - 1] -= carry;
x[i] = u >> 1;
mpi_shift_r( &M, w );
}
/*
* We should have consumed all bits, unless the input value was too big
*/
if( mpi_cmp_int( &M, 0 ) != 0 )
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
cleanup:
mpi_free( &M );
return( ret );
}
/*
* Precompute odd multiples of P up to (2 * t_len - 1) P.
* The table is filled with T[i] = (2 * i + 1) P.
*/
static int ecp_precompute( const ecp_group *grp,
ecp_point T[], size_t t_len,
const ecp_point *P )
{
int ret;
size_t i;
ecp_point PP;
ecp_point *TT[ 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) ];
ecp_point_init( &PP );
MPI_CHK( ecp_add( grp, &PP, P, P ) );
MPI_CHK( ecp_copy( &T[0], P ) );
for( i = 1; i < t_len; i++ )
MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
/*
* T[0] = P already has normalized coordinates, normalize others
*/
for( i = 1; i < t_len; i++ )
TT[i-1] = &T[i];
MPI_CHK( ecp_normalize_many( grp, TT, t_len - 1 ) );
cleanup:
ecp_point_free( &PP );
return( ret );
}
/*
* Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
@ -1334,192 +1235,6 @@ cleanup:
return( ret );
}
/*
* Maximum length of the precomputed table
*/
#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
/*
* Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
* (that is: grp->nbits / w + 1)
* Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
*/
#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_BITS / 2 + 1 )
/*
* Integer multiplication: R = m * P
*
* Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
*
* This function executes a fixed number of operations for
* random m in the range 0 .. 2^nbits - 1.
*
* As an additional countermeasure against potential timing attacks,
* we randomize coordinates before each addition. This was suggested as a
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
* we use jacobian coordinates, not standard projective coordinates).
*/
int ecp_mul_wnaf( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
unsigned char w, m_is_odd, p_eq_g;
size_t pre_len = 1, naf_len, i, j;
signed char naf[ MAX_NAF_LEN ];
ecp_point Q, *T = NULL, S[2];
mpi M;
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
mpi_init( &M );
ecp_point_init( &Q );
ecp_point_init( &S[0] );
ecp_point_init( &S[1] );
/*
* Check if P == G
*/
p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
/*
* If P == G, pre-compute a lot of points: this will be re-used later,
* otherwise, choose window size depending on curve size
*/
if( p_eq_g )
w = POLARSSL_ECP_WINDOW_SIZE;
else
w = grp->nbits >= 512 ? 6 :
grp->nbits >= 224 ? 5 :
4;
/*
* Make sure w is within the limits.
* The last test ensures that none of the precomputed points is zero,
* which wouldn't be handled correctly by ecp_normalize_many().
* It is only useful for very small curves as used in the test suite.
*/
if( w > POLARSSL_ECP_WINDOW_SIZE )
w = POLARSSL_ECP_WINDOW_SIZE;
if( w < 2 || w >= grp->nbits )
w = 2;
pre_len <<= ( w - 1 );
naf_len = grp->nbits / w + 1;
/*
* Prepare precomputed points: if P == G we want to
* use grp->T if already initialized, or initiliaze it.
*/
if( ! p_eq_g || grp->T == NULL )
{
T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
if( T == NULL )
{
ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
goto cleanup;
}
for( i = 0; i < pre_len; i++ )
ecp_point_init( &T[i] );
MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
if( p_eq_g )
{
grp->T = T;
grp->T_size = pre_len;
}
}
else
{
T = grp->T;
/* Should never happen, but we want to be extra sure */
if( pre_len != grp->T_size )
{
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
}
/*
* Make sure M is odd (M = m + 1 or M = m + 2)
* later we'll get m * P by subtracting P or 2 * P to M * P.
*/
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
MPI_CHK( mpi_copy( &M, m ) );
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
/*
* Compute the fixed-pattern NAF of M
*/
MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
/*
* Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
* at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
*
* If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
* Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
* == T[ - naf[i] - 1 ]
*/
MPI_CHK( ecp_set_zero( &Q ) );
i = naf_len - 1;
while( 1 )
{
/* Countermeasure (see comments above) */
if( f_rng != NULL )
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
if( naf[i] < 0 )
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
}
else
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
}
if( i == 0 )
break;
i--;
for( j = 0; j < w; j++ )
{
MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
}
}
/*
* Now get m * P from M * P
*/
MPI_CHK( ecp_copy( &S[0], P ) );
MPI_CHK( ecp_add( grp, &S[1], P, P ) );
MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
cleanup:
if( T != NULL && ! p_eq_g )
{
for( i = 0; i < pre_len; i++ )
ecp_point_free( &T[i] );
polarssl_free( T );
}
ecp_point_free( &S[1] );
ecp_point_free( &S[0] );
ecp_point_free( &Q );
mpi_free( &M );
return( ret );
}
/*
* Check and define parameters used by the comb method (see below for details)
*/
@ -1714,9 +1429,9 @@ cleanup:
/*
* Multiplication using the comb method
*/
int ecp_mul_comb( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
unsigned char w, m_is_odd, p_eq_g;