psasim: add support for psa_{sign,verify}_hash_xxx() and get/set max ops

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
This commit is contained in:
Tom Cosgrove 2024-06-21 17:09:11 +01:00 committed by Valerio Setti
parent 9b10cf7e39
commit 05c99e13e6
7 changed files with 2515 additions and 1 deletions

View File

@ -51,6 +51,8 @@ enum {
PSA_HASH_UPDATE,
PSA_HASH_VERIFY,
PSA_IMPORT_KEY,
PSA_INTERRUPTIBLE_GET_MAX_OPS,
PSA_INTERRUPTIBLE_SET_MAX_OPS,
PSA_KEY_DERIVATION_ABORT,
PSA_KEY_DERIVATION_GET_CAPACITY,
PSA_KEY_DERIVATION_INPUT_BYTES,
@ -73,8 +75,16 @@ enum {
PSA_PURGE_KEY,
PSA_RAW_KEY_AGREEMENT,
PSA_SIGN_HASH,
PSA_SIGN_HASH_ABORT,
PSA_SIGN_HASH_COMPLETE,
PSA_SIGN_HASH_GET_NUM_OPS,
PSA_SIGN_HASH_START,
PSA_SIGN_MESSAGE,
PSA_VERIFY_HASH,
PSA_VERIFY_HASH_ABORT,
PSA_VERIFY_HASH_COMPLETE,
PSA_VERIFY_HASH_GET_NUM_OPS,
PSA_VERIFY_HASH_START,
PSA_VERIFY_MESSAGE,
};

View File

@ -3205,6 +3205,109 @@ fail:
}
uint32_t psa_interruptible_get_max_ops(
void
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
uint32_t value = 0;
size_t needed = psasim_serialise_begin_needs() +
0;
ser_params = malloc(needed);
if (ser_params == NULL) {
value = 0;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_INTERRUPTIBLE_GET_MAX_OPS,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_INTERRUPTIBLE_GET_MAX_OPS server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_uint32_t(&rpos, &rremain, &value);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return value;
}
void psa_interruptible_set_max_ops(
uint32_t max_ops
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_uint32_t_needs(max_ops);
ser_params = malloc(needed);
if (ser_params == NULL) {
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_uint32_t(&pos, &remaining, max_ops);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_INTERRUPTIBLE_SET_MAX_OPS,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_INTERRUPTIBLE_SET_MAX_OPS server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
}
psa_status_t psa_key_derivation_abort(
psa_key_derivation_operation_t *operation
)
@ -4867,6 +4970,293 @@ fail:
}
psa_status_t psa_sign_hash_abort(
psa_sign_hash_interruptible_operation_t *operation
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(*operation);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_SIGN_HASH_ABORT,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_SIGN_HASH_ABORT server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
psa_status_t psa_sign_hash_complete(
psa_sign_hash_interruptible_operation_t *operation,
uint8_t *signature, size_t signature_size,
size_t *signature_length
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(*operation) +
psasim_serialise_buffer_needs(signature, signature_size) +
psasim_serialise_size_t_needs(*signature_length);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, signature, signature_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&pos, &remaining, *signature_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_SIGN_HASH_COMPLETE,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_SIGN_HASH_COMPLETE server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_return_buffer(&rpos, &rremain, signature, signature_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&rpos, &rremain, signature_length);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
uint32_t psa_sign_hash_get_num_ops(
const psa_sign_hash_interruptible_operation_t *operation
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
uint32_t value = 0;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(*operation);
ser_params = malloc(needed);
if (ser_params == NULL) {
value = 0;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_SIGN_HASH_GET_NUM_OPS,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_SIGN_HASH_GET_NUM_OPS server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_uint32_t(&rpos, &rremain, &value);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return value;
}
psa_status_t psa_sign_hash_start(
psa_sign_hash_interruptible_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *hash, size_t hash_length
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(*operation) +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg) +
psasim_serialise_buffer_needs(hash, hash_length);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, hash, hash_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_SIGN_HASH_START,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_SIGN_HASH_START server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
psa_status_t psa_sign_message(
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
@ -5035,6 +5425,277 @@ fail:
}
psa_status_t psa_verify_hash_abort(
psa_verify_hash_interruptible_operation_t *operation
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(*operation);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_VERIFY_HASH_ABORT,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_VERIFY_HASH_ABORT server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
psa_status_t psa_verify_hash_complete(
psa_verify_hash_interruptible_operation_t *operation
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(*operation);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_VERIFY_HASH_COMPLETE,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_VERIFY_HASH_COMPLETE server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
uint32_t psa_verify_hash_get_num_ops(
const psa_verify_hash_interruptible_operation_t *operation
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
uint32_t value = 0;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(*operation);
ser_params = malloc(needed);
if (ser_params == NULL) {
value = 0;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_VERIFY_HASH_GET_NUM_OPS,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_VERIFY_HASH_GET_NUM_OPS server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_uint32_t(&rpos, &rremain, &value);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return value;
}
psa_status_t psa_verify_hash_start(
psa_verify_hash_interruptible_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *hash, size_t hash_length,
const uint8_t *signature, size_t signature_length
)
{
uint8_t *ser_params = NULL;
uint8_t *ser_result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(*operation) +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg) +
psasim_serialise_buffer_needs(hash, hash_length) +
psasim_serialise_buffer_needs(signature, signature_length);
ser_params = malloc(needed);
if (ser_params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = ser_params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, hash, hash_length);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, signature, signature_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_VERIFY_HASH_START,
ser_params, (size_t) (pos - ser_params), &ser_result, &result_length);
if (!ok) {
printf("PSA_VERIFY_HASH_START server call failed\n");
goto fail;
}
uint8_t *rpos = ser_result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(ser_params);
free(ser_result);
return status;
}
psa_status_t psa_verify_message(
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,

View File

@ -3676,6 +3676,111 @@ fail:
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_interruptible_get_max_ops_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
uint32_t value = 0;
uint8_t *result = NULL;
int ok;
// Now we call the actual target function
value = psa_interruptible_get_max_ops(
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_uint32_t_needs(value);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_uint32_t(&rpos, &rremain, value);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_interruptible_set_max_ops_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
uint32_t max_ops;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_uint32_t(&pos, &remaining, &max_ops);
if (!ok) {
goto fail;
}
// Now we call the actual target function
psa_interruptible_set_max_ops(
max_ops
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs();
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_key_derivation_abort_wrapper(
uint8_t *in_params, size_t in_params_len,
@ -5584,6 +5689,333 @@ fail:
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_sign_hash_abort_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_sign_hash_interruptible_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_sign_hash_abort(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_sign_hash_interruptible_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_sign_hash_complete_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_sign_hash_interruptible_operation_t *operation;
uint8_t *signature = NULL;
size_t signature_size;
size_t signature_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &signature, &signature_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&pos, &remaining, &signature_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_sign_hash_complete(
operation,
signature, signature_size,
&signature_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_sign_hash_interruptible_operation_t_needs(operation) +
psasim_serialise_buffer_needs(signature, signature_size) +
psasim_serialise_size_t_needs(signature_length);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&rpos, &rremain, signature, signature_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&rpos, &rremain, signature_length);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(signature);
return 1; // success
fail:
free(result);
free(signature);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_sign_hash_get_num_ops_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
uint32_t value = 0;
psa_sign_hash_interruptible_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
value = psa_sign_hash_get_num_ops(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_uint32_t_needs(value);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_uint32_t(&rpos, &rremain, value);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_sign_hash_start_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_sign_hash_interruptible_operation_t *operation;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *hash = NULL;
size_t hash_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &hash, &hash_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_sign_hash_start(
operation,
key,
alg,
hash, hash_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_sign_hash_interruptible_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_sign_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(hash);
return 1; // success
fail:
free(result);
free(hash);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_sign_message_wrapper(
uint8_t *in_params, size_t in_params_len,
@ -5787,6 +6219,312 @@ fail:
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_verify_hash_abort_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_verify_hash_interruptible_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_verify_hash_abort(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_verify_hash_interruptible_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_verify_hash_complete_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_verify_hash_interruptible_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_verify_hash_complete(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_verify_hash_interruptible_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_verify_hash_get_num_ops_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
uint32_t value = 0;
psa_verify_hash_interruptible_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
value = psa_verify_hash_get_num_ops(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_uint32_t_needs(value);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_uint32_t(&rpos, &rremain, value);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_verify_hash_start_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_verify_hash_interruptible_operation_t *operation;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *hash = NULL;
size_t hash_length;
uint8_t *signature = NULL;
size_t signature_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &hash, &hash_length);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &signature, &signature_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_verify_hash_start(
operation,
key,
alg,
hash, hash_length,
signature, signature_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_verify_hash_interruptible_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_verify_hash_interruptible_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(hash);
free(signature);
return 1; // success
fail:
free(result);
free(hash);
free(signature);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_verify_message_wrapper(
uint8_t *in_params, size_t in_params_len,
@ -6075,6 +6813,14 @@ psa_status_t psa_crypto_call(psa_msg_t msg)
ok = psa_import_key_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_INTERRUPTIBLE_GET_MAX_OPS:
ok = psa_interruptible_get_max_ops_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_INTERRUPTIBLE_SET_MAX_OPS:
ok = psa_interruptible_set_max_ops_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_KEY_DERIVATION_ABORT:
ok = psa_key_derivation_abort_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
@ -6163,6 +6909,22 @@ psa_status_t psa_crypto_call(psa_msg_t msg)
ok = psa_sign_hash_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_SIGN_HASH_ABORT:
ok = psa_sign_hash_abort_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_SIGN_HASH_COMPLETE:
ok = psa_sign_hash_complete_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_SIGN_HASH_GET_NUM_OPS:
ok = psa_sign_hash_get_num_ops_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_SIGN_HASH_START:
ok = psa_sign_hash_start_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_SIGN_MESSAGE:
ok = psa_sign_message_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
@ -6171,6 +6933,22 @@ psa_status_t psa_crypto_call(psa_msg_t msg)
ok = psa_verify_hash_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_VERIFY_HASH_ABORT:
ok = psa_verify_hash_abort_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_VERIFY_HASH_COMPLETE:
ok = psa_verify_hash_complete_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_VERIFY_HASH_GET_NUM_OPS:
ok = psa_verify_hash_get_num_ops_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_VERIFY_HASH_START:
ok = psa_verify_hash_start_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_VERIFY_MESSAGE:
ok = psa_verify_message_wrapper(in_params, in_params_len,
&out_params, &out_params_len);

View File

@ -4872,3 +4872,555 @@ psa_status_t psa_export_public_key(mbedtls_svc_key_id_t key,
uint8_t *data,
size_t data_size,
size_t *data_length);
/**
* \brief Set the maximum number of ops allowed to be
* executed by an interruptible function in a
* single call.
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note The time taken to execute a single op is
* implementation specific and depends on
* software, hardware, the algorithm, key type and
* curve chosen. Even within a single operation,
* successive ops can take differing amounts of
* time. The only guarantee is that lower values
* for \p max_ops means functions will block for a
* lesser maximum amount of time. The functions
* \c psa_sign_interruptible_get_num_ops() and
* \c psa_verify_interruptible_get_num_ops() are
* provided to help with tuning this value.
*
* \note This value defaults to
* #PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED, which
* means the whole operation will be done in one
* go, regardless of the number of ops required.
*
* \note If more ops are needed to complete a
* computation, #PSA_OPERATION_INCOMPLETE will be
* returned by the function performing the
* computation. It is then the caller's
* responsibility to either call again with the
* same operation context until it returns 0 or an
* error code; or to call the relevant abort
* function if the answer is no longer required.
*
* \note The interpretation of \p max_ops is also
* implementation defined. On a hard real time
* system, this can indicate a hard deadline, as a
* real-time system needs a guarantee of not
* spending more than X time, however care must be
* taken in such an implementation to avoid the
* situation whereby calls just return, not being
* able to do any actual work within the allotted
* time. On a non-real-time system, the
* implementation can be more relaxed, but again
* whether this number should be interpreted as as
* hard or soft limit or even whether a less than
* or equals as regards to ops executed in a
* single call is implementation defined.
*
* \note For keys in local storage when no accelerator
* driver applies, please see also the
* documentation for \c mbedtls_ecp_set_max_ops(),
* which is the internal implementation in these
* cases.
*
* \warning With implementations that interpret this number
* as a hard limit, setting this number too small
* may result in an infinite loop, whereby each
* call results in immediate return with no ops
* done (as there is not enough time to execute
* any), and thus no result will ever be achieved.
*
* \note This only applies to functions whose
* documentation mentions they may return
* #PSA_OPERATION_INCOMPLETE.
*
* \param max_ops The maximum number of ops to be executed in a
* single call. This can be a number from 0 to
* #PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED, where 0
* is the least amount of work done per call.
*/
void psa_interruptible_set_max_ops(uint32_t max_ops);
/**
* \brief Get the maximum number of ops allowed to be
* executed by an interruptible function in a
* single call. This will return the last
* value set by
* \c psa_interruptible_set_max_ops() or
* #PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED if
* that function has never been called.
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \return Maximum number of ops allowed to be
* executed by an interruptible function in a
* single call.
*/
uint32_t psa_interruptible_get_max_ops(void);
/**
* \brief Get the number of ops that a hash signing
* operation has taken so far. If the operation
* has completed, then this will represent the
* number of ops required for the entire
* operation. After initialization or calling
* \c psa_sign_hash_interruptible_abort() on
* the operation, a value of 0 will be returned.
*
* \note This interface is guaranteed re-entrant and
* thus may be called from driver code.
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* This is a helper provided to help you tune the
* value passed to \c
* psa_interruptible_set_max_ops().
*
* \param operation The \c psa_sign_hash_interruptible_operation_t
* to use. This must be initialized first.
*
* \return Number of ops that the operation has taken so
* far.
*/
uint32_t psa_sign_hash_get_num_ops(
const psa_sign_hash_interruptible_operation_t *operation);
/**
* \brief Get the number of ops that a hash verification
* operation has taken so far. If the operation
* has completed, then this will represent the
* number of ops required for the entire
* operation. After initialization or calling \c
* psa_verify_hash_interruptible_abort() on the
* operation, a value of 0 will be returned.
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* This is a helper provided to help you tune the
* value passed to \c
* psa_interruptible_set_max_ops().
*
* \param operation The \c
* psa_verify_hash_interruptible_operation_t to
* use. This must be initialized first.
*
* \return Number of ops that the operation has taken so
* far.
*/
uint32_t psa_verify_hash_get_num_ops(
const psa_verify_hash_interruptible_operation_t *operation);
/**
* \brief Start signing a hash or short message with a
* private key, in an interruptible manner.
*
* \see \c psa_sign_hash_complete()
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note This function combined with \c
* psa_sign_hash_complete() is equivalent to
* \c psa_sign_hash() but
* \c psa_sign_hash_complete() can return early and
* resume according to the limit set with \c
* psa_interruptible_set_max_ops() to reduce the
* maximum time spent in a function call.
*
* \note Users should call \c psa_sign_hash_complete()
* repeatedly on the same context after a
* successful call to this function until \c
* psa_sign_hash_complete() either returns 0 or an
* error. \c psa_sign_hash_complete() will return
* #PSA_OPERATION_INCOMPLETE if there is more work
* to do. Alternatively users can call
* \c psa_sign_hash_abort() at any point if they no
* longer want the result.
*
* \note If this function returns an error status, the
* operation enters an error state and must be
* aborted by calling \c psa_sign_hash_abort().
*
* \param[in, out] operation The \c psa_sign_hash_interruptible_operation_t
* to use. This must be initialized first.
*
* \param key Identifier of the key to use for the operation.
* It must be an asymmetric key pair. The key must
* allow the usage #PSA_KEY_USAGE_SIGN_HASH.
* \param alg A signature algorithm (\c PSA_ALG_XXX
* value such that #PSA_ALG_IS_SIGN_HASH(\p alg)
* is true), that is compatible with
* the type of \p key.
* \param[in] hash The hash or message to sign.
* \param hash_length Size of the \p hash buffer in bytes.
*
* \retval #PSA_SUCCESS
* The operation started successfully - call \c psa_sign_hash_complete()
* with the same context to complete the operation
*
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_NOT_PERMITTED
* The key does not have the #PSA_KEY_USAGE_SIGN_HASH flag, or it does
* not permit the requested algorithm.
* \retval #PSA_ERROR_BAD_STATE
* An operation has previously been started on this context, and is
* still in progress.
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
* \retval #PSA_ERROR_DATA_INVALID \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_sign_hash_start(
psa_sign_hash_interruptible_operation_t *operation,
mbedtls_svc_key_id_t key, psa_algorithm_t alg,
const uint8_t *hash, size_t hash_length);
/**
* \brief Continue and eventually complete the action of
* signing a hash or short message with a private
* key, in an interruptible manner.
*
* \see \c psa_sign_hash_start()
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note This function combined with \c
* psa_sign_hash_start() is equivalent to
* \c psa_sign_hash() but this function can return
* early and resume according to the limit set with
* \c psa_interruptible_set_max_ops() to reduce the
* maximum time spent in a function call.
*
* \note Users should call this function on the same
* operation object repeatedly until it either
* returns 0 or an error. This function will return
* #PSA_OPERATION_INCOMPLETE if there is more work
* to do. Alternatively users can call
* \c psa_sign_hash_abort() at any point if they no
* longer want the result.
*
* \note When this function returns successfully, the
* operation becomes inactive. If this function
* returns an error status, the operation enters an
* error state and must be aborted by calling
* \c psa_sign_hash_abort().
*
* \param[in, out] operation The \c psa_sign_hash_interruptible_operation_t
* to use. This must be initialized first, and have
* had \c psa_sign_hash_start() called with it
* first.
*
* \param[out] signature Buffer where the signature is to be written.
* \param signature_size Size of the \p signature buffer in bytes. This
* must be appropriate for the selected
* algorithm and key:
* - The required signature size is
* #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c
* key_bits, \c alg) where \c key_type and \c
* key_bits are the type and bit-size
* respectively of key.
* - #PSA_SIGNATURE_MAX_SIZE evaluates to the
* maximum signature size of any supported
* signature algorithm.
* \param[out] signature_length On success, the number of bytes that make up
* the returned signature value.
*
* \retval #PSA_SUCCESS
* Operation completed successfully
*
* \retval #PSA_OPERATION_INCOMPLETE
* Operation was interrupted due to the setting of \c
* psa_interruptible_set_max_ops(). There is still work to be done.
* Call this function again with the same operation object.
*
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p signature buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \c alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \c key.
*
* \retval #PSA_ERROR_BAD_STATE
* An operation was not previously started on this context via
* \c psa_sign_hash_start().
*
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
* \retval #PSA_ERROR_DATA_INVALID \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has either not been previously initialized by
* psa_crypto_init() or you did not previously call
* psa_sign_hash_start() with this operation object. It is
* implementation-dependent whether a failure to initialize results in
* this error code.
*/
psa_status_t psa_sign_hash_complete(
psa_sign_hash_interruptible_operation_t *operation,
uint8_t *signature, size_t signature_size,
size_t *signature_length);
/**
* \brief Abort a sign hash operation.
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note This function is the only function that clears
* the number of ops completed as part of the
* operation. Please ensure you copy this value via
* \c psa_sign_hash_get_num_ops() if required
* before calling.
*
* \note Aborting an operation frees all associated
* resources except for the \p operation structure
* itself. Once aborted, the operation object can
* be reused for another operation by calling \c
* psa_sign_hash_start() again.
*
* \note You may call this function any time after the
* operation object has been initialized. In
* particular, calling \c psa_sign_hash_abort()
* after the operation has already been terminated
* by a call to \c psa_sign_hash_abort() or
* psa_sign_hash_complete() is safe.
*
* \param[in,out] operation Initialized sign hash operation.
*
* \retval #PSA_SUCCESS
* The operation was aborted successfully.
*
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_sign_hash_abort(
psa_sign_hash_interruptible_operation_t *operation);
/**
* \brief Start reading and verifying a hash or short
* message, in an interruptible manner.
*
* \see \c psa_verify_hash_complete()
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note This function combined with \c
* psa_verify_hash_complete() is equivalent to
* \c psa_verify_hash() but \c
* psa_verify_hash_complete() can return early and
* resume according to the limit set with \c
* psa_interruptible_set_max_ops() to reduce the
* maximum time spent in a function.
*
* \note Users should call \c psa_verify_hash_complete()
* repeatedly on the same operation object after a
* successful call to this function until \c
* psa_verify_hash_complete() either returns 0 or
* an error. \c psa_verify_hash_complete() will
* return #PSA_OPERATION_INCOMPLETE if there is
* more work to do. Alternatively users can call
* \c psa_verify_hash_abort() at any point if they
* no longer want the result.
*
* \note If this function returns an error status, the
* operation enters an error state and must be
* aborted by calling \c psa_verify_hash_abort().
*
* \param[in, out] operation The \c psa_verify_hash_interruptible_operation_t
* to use. This must be initialized first.
*
* \param key Identifier of the key to use for the operation.
* The key must allow the usage
* #PSA_KEY_USAGE_VERIFY_HASH.
* \param alg A signature algorithm (\c PSA_ALG_XXX
* value such that #PSA_ALG_IS_SIGN_HASH(\p alg)
* is true), that is compatible with
* the type of \p key.
* \param[in] hash The hash whose signature is to be verified.
* \param hash_length Size of the \p hash buffer in bytes.
* \param[in] signature Buffer containing the signature to verify.
* \param signature_length Size of the \p signature buffer in bytes.
*
* \retval #PSA_SUCCESS
* The operation started successfully - please call \c
* psa_verify_hash_complete() with the same context to complete the
* operation.
*
* \retval #PSA_ERROR_BAD_STATE
* Another operation has already been started on this context, and is
* still in progress.
*
* \retval #PSA_ERROR_NOT_PERMITTED
* The key does not have the #PSA_KEY_USAGE_VERIFY_HASH flag, or it does
* not permit the requested algorithm.
*
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval PSA_ERROR_DATA_CORRUPT \emptydescription
* \retval PSA_ERROR_DATA_INVALID \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_verify_hash_start(
psa_verify_hash_interruptible_operation_t *operation,
mbedtls_svc_key_id_t key, psa_algorithm_t alg,
const uint8_t *hash, size_t hash_length,
const uint8_t *signature, size_t signature_length);
/**
* \brief Continue and eventually complete the action of
* reading and verifying a hash or short message
* signed with a private key, in an interruptible
* manner.
*
* \see \c psa_verify_hash_start()
*
* \warning This is a beta API, and thus subject to change
* at any point. It is not bound by the usual
* interface stability promises.
*
* \note This function combined with \c
* psa_verify_hash_start() is equivalent to
* \c psa_verify_hash() but this function can
* return early and resume according to the limit
* set with \c psa_interruptible_set_max_ops() to
* reduce the maximum time spent in a function
* call.
*
* \note Users should call this function on the same
* operation object repeatedly until it either
* returns 0 or an error. This function will return
* #PSA_OPERATION_INCOMPLETE if there is more work
* to do. Alternatively users can call
* \c psa_verify_hash_abort() at any point if they
* no longer want the result.
*
* \note When this function returns successfully, the
* operation becomes inactive. If this function
* returns an error status, the operation enters an
* error state and must be aborted by calling
* \c psa_verify_hash_abort().
*
* \param[in, out] operation The \c psa_verify_hash_interruptible_operation_t
* to use. This must be initialized first, and have
* had \c psa_verify_hash_start() called with it
* first.
*
* \retval #PSA_SUCCESS
* Operation completed successfully, and the passed signature is valid.
*
* \retval #PSA_OPERATION_INCOMPLETE
* Operation was interrupted due to the setting of \c
* psa_interruptible_set_max_ops(). There is still work to be done.
* Call this function again with the same operation object.
*
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The calculation was performed successfully, but the passed
* signature is not a valid signature.
* \retval #PSA_ERROR_BAD_STATE
* An operation was not previously started on this context via
* \c psa_verify_hash_start().
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
* \retval #PSA_ERROR_DATA_INVALID \emptydescription
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has either not been previously initialized by
* psa_crypto_init() or you did not previously call
* psa_verify_hash_start() on this object. It is
* implementation-dependent whether a failure to initialize results in
* this error code.
*/
psa_status_t psa_verify_hash_complete(
psa_verify_hash_interruptible_operation_t *operation);
/**
* \brief Abort a verify hash operation.
*
* \warning This is a beta API, and thus subject to change at
* any point. It is not bound by the usual interface
* stability promises.
*
* \note This function is the only function that clears the
* number of ops completed as part of the operation.
* Please ensure you copy this value via
* \c psa_verify_hash_get_num_ops() if required
* before calling.
*
* \note Aborting an operation frees all associated
* resources except for the operation structure
* itself. Once aborted, the operation object can be
* reused for another operation by calling \c
* psa_verify_hash_start() again.
*
* \note You may call this function any time after the
* operation object has been initialized.
* In particular, calling \c psa_verify_hash_abort()
* after the operation has already been terminated by
* a call to \c psa_verify_hash_abort() or
* psa_verify_hash_complete() is safe.
*
* \param[in,out] operation Initialized verify hash operation.
*
* \retval #PSA_SUCCESS
* The operation was aborted successfully.
*
* \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_verify_hash_abort(
psa_verify_hash_interruptible_operation_t *operation);

View File

@ -253,6 +253,82 @@ static ssize_t find_key_derivation_slot_by_handle(psasim_client_handle_t handle)
return -1; /* not found */
}
static psa_sign_hash_interruptible_operation_t sign_hash_interruptible_operations[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t sign_hash_interruptible_operation_handles[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t next_sign_hash_interruptible_operation_handle = 1;
/* Get a free slot */
static ssize_t allocate_sign_hash_interruptible_operation_slot(void)
{
psasim_client_handle_t handle = next_sign_hash_interruptible_operation_handle++;
if (next_sign_hash_interruptible_operation_handle == 0) { /* wrapped around */
FATAL("Sign_hash_interruptible operation handle wrapped");
}
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (sign_hash_interruptible_operation_handles[i] == 0) {
sign_hash_interruptible_operation_handles[i] = handle;
return i;
}
}
ERROR("All slots are currently used. Unable to allocate a new one.");
return -1; /* all in use */
}
/* Find the slot given the handle */
static ssize_t find_sign_hash_interruptible_slot_by_handle(psasim_client_handle_t handle)
{
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (sign_hash_interruptible_operation_handles[i] == handle) {
return i;
}
}
ERROR("Unable to find slot by handle %u", handle);
return -1; /* not found */
}
static psa_verify_hash_interruptible_operation_t verify_hash_interruptible_operations[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t verify_hash_interruptible_operation_handles[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t next_verify_hash_interruptible_operation_handle = 1;
/* Get a free slot */
static ssize_t allocate_verify_hash_interruptible_operation_slot(void)
{
psasim_client_handle_t handle = next_verify_hash_interruptible_operation_handle++;
if (next_verify_hash_interruptible_operation_handle == 0) { /* wrapped around */
FATAL("Verify_hash_interruptible operation handle wrapped");
}
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (verify_hash_interruptible_operation_handles[i] == 0) {
verify_hash_interruptible_operation_handles[i] = handle;
return i;
}
}
ERROR("All slots are currently used. Unable to allocate a new one.");
return -1; /* all in use */
}
/* Find the slot given the handle */
static ssize_t find_verify_hash_interruptible_slot_by_handle(psasim_client_handle_t handle)
{
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (verify_hash_interruptible_operation_handles[i] == handle) {
return i;
}
}
ERROR("Unable to find slot by handle %u", handle);
return -1; /* not found */
}
size_t psasim_serialise_begin_needs(void)
{
/* The serialisation buffer will
@ -467,6 +543,41 @@ int psasim_deserialise_uint16_t(uint8_t **pos,
return 1;
}
size_t psasim_serialise_uint32_t_needs(uint32_t value)
{
return sizeof(value);
}
int psasim_serialise_uint32_t(uint8_t **pos,
size_t *remaining,
uint32_t value)
{
if (*remaining < sizeof(value)) {
return 0;
}
memcpy(*pos, &value, sizeof(value));
*pos += sizeof(value);
return 1;
}
int psasim_deserialise_uint32_t(uint8_t **pos,
size_t *remaining,
uint32_t *value)
{
if (*remaining < sizeof(*value)) {
return 0;
}
memcpy(value, *pos, sizeof(*value));
*pos += sizeof(*value);
*remaining -= sizeof(*value);
return 1;
}
size_t psasim_serialise_uint64_t_needs(uint64_t value)
{
return sizeof(value);
@ -1255,6 +1366,192 @@ int psasim_server_deserialise_psa_key_derivation_operation_t(uint8_t **pos,
return 1;
}
size_t psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(psa_sign_hash_interruptible_operation_t value)
{
return sizeof(value);
}
int psasim_serialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t value)
{
if (*remaining < sizeof(value)) {
return 0;
}
memcpy(*pos, &value, sizeof(value));
*pos += sizeof(value);
return 1;
}
int psasim_deserialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t *value)
{
if (*remaining < sizeof(*value)) {
return 0;
}
memcpy(value, *pos, sizeof(*value));
*pos += sizeof(*value);
*remaining -= sizeof(*value);
return 1;
}
size_t psasim_server_serialise_psa_sign_hash_interruptible_operation_t_needs(psa_sign_hash_interruptible_operation_t *operation)
{
(void) operation;
/* We will actually return a handle */
return sizeof(psasim_operation_t);
}
int psasim_server_serialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t *operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(client_operation)) {
return 0;
}
ssize_t slot = operation - sign_hash_interruptible_operations;
client_operation.handle = sign_hash_interruptible_operation_handles[slot];
memcpy(*pos, &client_operation, sizeof(client_operation));
*pos += sizeof(client_operation);
return 1;
}
int psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t **operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(psasim_operation_t)) {
return 0;
}
memcpy(&client_operation, *pos, sizeof(psasim_operation_t));
*pos += sizeof(psasim_operation_t);
*remaining -= sizeof(psasim_operation_t);
ssize_t slot;
if (client_operation.handle == 0) { /* We need a new handle */
slot = allocate_sign_hash_interruptible_operation_slot();
} else {
slot = find_sign_hash_interruptible_slot_by_handle(client_operation.handle);
}
if (slot < 0) {
return 0;
}
*operation = &sign_hash_interruptible_operations[slot];
return 1;
}
size_t psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(psa_verify_hash_interruptible_operation_t value)
{
return sizeof(value);
}
int psasim_serialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t value)
{
if (*remaining < sizeof(value)) {
return 0;
}
memcpy(*pos, &value, sizeof(value));
*pos += sizeof(value);
return 1;
}
int psasim_deserialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t *value)
{
if (*remaining < sizeof(*value)) {
return 0;
}
memcpy(value, *pos, sizeof(*value));
*pos += sizeof(*value);
*remaining -= sizeof(*value);
return 1;
}
size_t psasim_server_serialise_psa_verify_hash_interruptible_operation_t_needs(psa_verify_hash_interruptible_operation_t *operation)
{
(void) operation;
/* We will actually return a handle */
return sizeof(psasim_operation_t);
}
int psasim_server_serialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t *operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(client_operation)) {
return 0;
}
ssize_t slot = operation - verify_hash_interruptible_operations;
client_operation.handle = verify_hash_interruptible_operation_handles[slot];
memcpy(*pos, &client_operation, sizeof(client_operation));
*pos += sizeof(client_operation);
return 1;
}
int psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t **operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(psasim_operation_t)) {
return 0;
}
memcpy(&client_operation, *pos, sizeof(psasim_operation_t));
*pos += sizeof(psasim_operation_t);
*remaining -= sizeof(psasim_operation_t);
ssize_t slot;
if (client_operation.handle == 0) { /* We need a new handle */
slot = allocate_verify_hash_interruptible_operation_slot();
} else {
slot = find_verify_hash_interruptible_slot_by_handle(client_operation.handle);
}
if (slot < 0) {
return 0;
}
*operation = &verify_hash_interruptible_operations[slot];
return 1;
}
size_t psasim_serialise_mbedtls_svc_key_id_t_needs(mbedtls_svc_key_id_t value)
{
return sizeof(value);
@ -1302,4 +1599,8 @@ void psa_sim_serialize_reset(void)
memset(cipher_operations, 0, sizeof(cipher_operations));
memset(key_derivation_operation_handles, 0, sizeof(key_derivation_operation_handles));
memset(key_derivation_operations, 0, sizeof(key_derivation_operations));
memset(sign_hash_interruptible_operation_handles, 0, sizeof(sign_hash_interruptible_operation_handles));
memset(sign_hash_interruptible_operations, 0, sizeof(sign_hash_interruptible_operations));
memset(verify_hash_interruptible_operation_handles, 0, sizeof(verify_hash_interruptible_operation_handles));
memset(verify_hash_interruptible_operations, 0, sizeof(verify_hash_interruptible_operations));
}

View File

@ -264,6 +264,48 @@ int psasim_deserialise_uint16_t(uint8_t **pos,
size_t *remaining,
uint16_t *value);
/** Return how much buffer space is needed by \c psasim_serialise_uint32_t()
* to serialise an `uint32_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_uint32_t() to serialise
* the given value.
*/
size_t psasim_serialise_uint32_t_needs(uint32_t value);
/** Serialise an `uint32_t` into a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_serialise_uint32_t(uint8_t **pos,
size_t *remaining,
uint32_t value);
/** Deserialise an `uint32_t` from a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to an `uint32_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_deserialise_uint32_t(uint8_t **pos,
size_t *remaining,
uint32_t *value);
/** Return how much buffer space is needed by \c psasim_serialise_uint64_t()
* to serialise an `uint64_t`.
*
@ -1011,6 +1053,174 @@ int psasim_server_deserialise_psa_key_derivation_operation_t(uint8_t **pos,
size_t *remaining,
psa_key_derivation_operation_t **value);
/** Return how much buffer space is needed by \c psasim_serialise_psa_sign_hash_interruptible_operation_t()
* to serialise a `psa_sign_hash_interruptible_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_sign_hash_interruptible_operation_t() to serialise
* the given value.
*/
size_t psasim_serialise_psa_sign_hash_interruptible_operation_t_needs(psa_sign_hash_interruptible_operation_t value);
/** Serialise a `psa_sign_hash_interruptible_operation_t` into a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_serialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t value);
/** Deserialise a `psa_sign_hash_interruptible_operation_t` from a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_sign_hash_interruptible_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_deserialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t *value);
/** Return how much buffer space is needed by \c psasim_server_serialise_psa_sign_hash_interruptible_operation_t()
* to serialise a `psa_sign_hash_interruptible_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_sign_hash_interruptible_operation_t() to serialise
* the given value.
*/
size_t psasim_server_serialise_psa_sign_hash_interruptible_operation_t_needs(psa_sign_hash_interruptible_operation_t *value);
/** Serialise a `psa_sign_hash_interruptible_operation_t` into a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_serialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t *value);
/** Deserialise a `psa_sign_hash_interruptible_operation_t` from a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_sign_hash_interruptible_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_deserialise_psa_sign_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_sign_hash_interruptible_operation_t **value);
/** Return how much buffer space is needed by \c psasim_serialise_psa_verify_hash_interruptible_operation_t()
* to serialise a `psa_verify_hash_interruptible_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_verify_hash_interruptible_operation_t() to serialise
* the given value.
*/
size_t psasim_serialise_psa_verify_hash_interruptible_operation_t_needs(psa_verify_hash_interruptible_operation_t value);
/** Serialise a `psa_verify_hash_interruptible_operation_t` into a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_serialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t value);
/** Deserialise a `psa_verify_hash_interruptible_operation_t` from a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_verify_hash_interruptible_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_deserialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t *value);
/** Return how much buffer space is needed by \c psasim_server_serialise_psa_verify_hash_interruptible_operation_t()
* to serialise a `psa_verify_hash_interruptible_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_verify_hash_interruptible_operation_t() to serialise
* the given value.
*/
size_t psasim_server_serialise_psa_verify_hash_interruptible_operation_t_needs(psa_verify_hash_interruptible_operation_t *value);
/** Serialise a `psa_verify_hash_interruptible_operation_t` into a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_serialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t *value);
/** Deserialise a `psa_verify_hash_interruptible_operation_t` from a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_verify_hash_interruptible_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_deserialise_psa_verify_hash_interruptible_operation_t(uint8_t **pos,
size_t *remaining,
psa_verify_hash_interruptible_operation_t **value);
/** Return how much buffer space is needed by \c psasim_serialise_mbedtls_svc_key_id_t()
* to serialise a `mbedtls_svc_key_id_t`.
*

View File

@ -36,7 +36,7 @@ die($usage) unless $which eq "c" || $which eq "h";
# are).
#
my @types = qw(unsigned-int int size_t
uint16_t uint64_t
uint16_t uint32_t uint64_t
buffer
psa_key_production_parameters_t
psa_status_t psa_algorithm_t psa_key_derivation_step_t
@ -46,6 +46,8 @@ my @types = qw(unsigned-int int size_t
psa_mac_operation_t
psa_cipher_operation_t
psa_key_derivation_operation_t
psa_sign_hash_interruptible_operation_t
psa_verify_hash_interruptible_operation_t
mbedtls_svc_key_id_t);
grep(s/-/ /g, @types);