mirror of
https://github.com/lwip-tcpip/lwip.git
synced 2024-12-26 03:16:18 +00:00
lwIP mirror from http://git.savannah.gnu.org/cgit/lwip.git
b1d3dcb8d7
According to rfc5681: https://tools.ietf.org/html/rfc5681 Paragraph 3.2. Fast Retransmit/Fast Recovery The TCP sender SHOULD use the "fast retransmit" algorithm to detect and repair loss, based on incoming duplicate ACKs. The fast retransmit algorithm uses the arrival of 3 duplicate ACKs (as defined in section 2, without any intervening ACKs which move SND.UNA) as an indication that a segment has been lost. After receiving 3 duplicate ACKs, TCP performs a retransmission of what appears to be the missing segment, without waiting for the retransmission timer to expire. Now consider the following scenario: Server sends packets to client P0, P1, P2 .. PK. Client sends packets to server P`0 P`1 ... P`k. I.e. it is a pipelined conversation. Now lets assume that P1 is lost, Client will send an empty "duplicate" ack upon receive of P2, P3... In addition client will also send a new packet with "Client Data", P`0 P`1 .. e.t.c. according to sever receive window and client congestion window. Current implementation resets "duplicate" ack count upon receive of packets from client that holds new data. This in turn prevents server from fast recovery upon 3-duplicate acks receive. This is not required as in this case "sender unacknowledged window" is not moving. Signed-off-by: Solganik Alexander <sashas@lightbitslabs.com> |
||
---|---|---|
.vscode | ||
contrib | ||
doc | ||
src | ||
test | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
BUILDING | ||
CHANGELOG | ||
CMakeLists.txt | ||
COPYING | ||
FEATURES | ||
FILES | ||
README | ||
travis.sh | ||
UPGRADING |
INTRODUCTION lwIP is a small independent implementation of the TCP/IP protocol suite. The focus of the lwIP TCP/IP implementation is to reduce the RAM usage while still having a full scale TCP. This making lwIP suitable for use in embedded systems with tens of kilobytes of free RAM and room for around 40 kilobytes of code ROM. lwIP was originally developed by Adam Dunkels at the Computer and Networks Architectures (CNA) lab at the Swedish Institute of Computer Science (SICS) and is now developed and maintained by a worldwide network of developers. FEATURES * IP (Internet Protocol, IPv4 and IPv6) including packet forwarding over multiple network interfaces * ICMP (Internet Control Message Protocol) for network maintenance and debugging * IGMP (Internet Group Management Protocol) for multicast traffic management * MLD (Multicast listener discovery for IPv6). Aims to be compliant with RFC 2710. No support for MLDv2 * ND (Neighbor discovery and stateless address autoconfiguration for IPv6). Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862 (Address autoconfiguration) * DHCP, AutoIP/APIPA (Zeroconf), ACD (Address Conflict Detection) and (stateless) DHCPv6 * UDP (User Datagram Protocol) including experimental UDP-lite extensions * TCP (Transmission Control Protocol) with congestion control, RTT estimation fast recovery/fast retransmit and sending SACKs * raw/native API for enhanced performance * Optional Berkeley-like socket API * TLS: optional layered TCP ("altcp") for nearly transparent TLS for any TCP-based protocol (ported to mbedTLS) (see changelog for more info) * PPPoS and PPPoE (Point-to-point protocol over Serial/Ethernet) * DNS (Domain name resolver incl. mDNS) * 6LoWPAN (via IEEE 802.15.4, BLE or ZEP) APPLICATIONS * HTTP server with SSI and CGI (HTTPS via altcp) * SNMPv2c agent with MIB compiler (Simple Network Management Protocol), v3 via altcp * SNTP (Simple network time protocol) * NetBIOS name service responder * MDNS (Multicast DNS) responder * iPerf server implementation * MQTT client (TLS support via altcp) LICENSE lwIP is freely available under a BSD license. DEVELOPMENT lwIP has grown into an excellent TCP/IP stack for embedded devices, and developers using the stack often submit bug fixes, improvements, and additions to the stack to further increase its usefulness. Development of lwIP is hosted on Savannah, a central point for software development, maintenance and distribution. Everyone can help improve lwIP by use of Savannah's interface, Git and the mailing list. A core team of developers will commit changes to the Git source tree. The lwIP TCP/IP stack is maintained in the 'lwip' Git module and contributions (such as platform ports) are in the 'contrib' Git module. See doc/savannah.txt for details on Git server access for users and developers. The current Git trees are web-browsable: http://git.savannah.gnu.org/cgit/lwip.git http://git.savannah.gnu.org/cgit/lwip/lwip-contrib.git Submit patches and bugs via the lwIP project page: http://savannah.nongnu.org/projects/lwip/ Continuous integration builds (GCC, clang): https://travis-ci.org/lwip-tcpip/lwip DOCUMENTATION Self documentation of the source code is regularly extracted from the current Git sources and is available from this web page: http://www.nongnu.org/lwip/ Also, there are mailing lists you can subscribe at http://savannah.nongnu.org/mail/?group=lwip plus searchable archives: http://lists.nongnu.org/archive/html/lwip-users/ http://lists.nongnu.org/archive/html/lwip-devel/ There is a wiki about lwIP at http://lwip.wikia.com/wiki/LwIP_Wiki You might get questions answered there, but unfortunately, it is not as well maintained as it should be. lwIP was originally written by Adam Dunkels: http://dunkels.com/adam/ Reading Adam's papers, the files in docs/, browsing the source code documentation and browsing the mailing list archives is a good way to become familiar with the design of lwIP. Adam Dunkels <adam@sics.se> Leon Woestenberg <leon.woestenberg@gmx.net>